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Brief history of game theory

e 2-strategy games, evolutionary analysis

Adaptive dynamics

Tragedy of the Commons

MXB261: None of this content will be on the exam



Natural selection

e In previous lectures, you looked at population genetic models like this

1
Pot1 = U (Pn + qn)? e freq. AA
1
Gnt1 = V (P 1 Ga) (Gn + ra) a half freq. Aa
n
5 1
fns1 = W (qn + ra) 7 freq aa

d, = u(pn + qn)* +2v(pn + G0)(qn + 1) + w(qn + r)?

where u, v, w are fitness.
e Where does fitness come from?

e Previously assumed a constant, reflecting something about a static
or averaged environment,
e But might be more complicated than that



ess depends on genotypes and frequencies of ot

Fitness is determined not just by an individual's own genotype but by the
types and frequencies of other genes in the population

&
photo BBC

Need some mathematical framework to deal with this

e Game theory

e Came to biology from economics / military



A brief history of game theory - 1. cooperative game theory

e John von Neumann and Oskar Morgenstern in
1944
e Book — Theory of Games and Economic
Behavior
e “we wish to find the mathematically

complete principles which define ‘rational
behaviour’ for the participants in a social
economy, and to derive from them the
general characteristics of that behaviour”

e Cooperative game theory

e About humans forming coalitions, making

agreements, splitting costs/profits

Morgenstern (left) and von Neumann
(right)

e e.g. Several nearby towns want a water
supply
e Not yet so interesting to biologists ...



e John Nash - non-cooperative games
e A more general theory
e No enforcement mechanisms (e.g. contracts to
split costs) outside the game itself
e Not about coalitions, agreements and
side-payments possible between players, but
rather individual strategies and payoffs

e Individualistic

e ‘Darwinian’ view of the world: each works for
themselves and maximises own payoff

e ‘Games’

e All players are rational and have full information about game
e Players cannot coordinate with each other
e Single-shot

e Only objective is to maximise own payoff



Example: The stag hunt

Two people go on a hunt. Each can either hunt stag or hunt hare. A
stag is worth more but takes two people. A hare is easily caught alone.

COOPERATE &/\DEFECT

e What should an individualistic rational

player do?
e This is the simplest example of a & \hh
‘game’
e 2 players, 2 strategies, a single &, /,\xh
symmetric situation




Example: The stag hunt

Payoff matrix:
e Rows & cols are strategies

e 'Cooperate’: hunt stag together; or
e ‘Defect’: hunt hare alone.

2

e Cells are payoffs in each situation
COOPERATE DEFECT

0
= o

e Player 1 (rows) gets green payoffs
e Player 2 (columns) gets blue payoffs

COOPERATE

e Payoffs represent the situation:
e Stag is worth most 1

e But it takes 2 people to hunt stag,

so if one hunts stag by themselves

DEFECT

then they get nothing
e If both hunt hare, they get 1/2 the
hares each

e MXB261 knows how to find NE




Example: The stag hunt

Analyse the payoff matrix:

e Imagine yourself as player 1
e |f other player hunting stag?

2

COOPéRATE DEFECT

e Best to hunt stag S

= o

e |f other player hunting hare?

e Best to hunt hare

e Imagine yourself as player 2

COOPERATE

e Symmetric game, so the same is true
for player 2 1

e Notice how individualistic:

DEFECT

e | make the best choice for myself

only
e My best strategy depends on others’
strategy



Example: The stag hunt

Notation: payoff to a focal individual is
f(focal individ's strategy, others’ strategy)

e Notation:

e Xx; is the pure strategy — ‘stag’ or Si“ 2

‘hare’ — of player i COOPERATE DEFECT

e f(x;,x;) is the payoff to player i w

when i plays x; and j plays x; &

o

[«]

e Symmetric Nash equilibrium x*: 8
1

f(x*,x*) > f(x,x*) 5

for all other strategies x a

10



Example: The stag hunt

° Symmetrlc Nash equ|||br|um X*: Notation: payoff to a focal individual is

f(focal individ's strategy, others’ strategy)

f(x*,x*) > f(x,x¥) 2
Sh
for all other strategies x * | CcOOPERATE DEFECT
e The stag hunt has two such equilbria: 3
1. x* = stag §
o
f(stag, stag) > f(hare, stag) 1
:
2. x* = hare i

f(hare, hare) > f(stag, hare)

11



Example of stag hunt in nature - carousel hunting

© National Geographic Partners, LLC All rights reserved NATIONAL GEOGRAPHIC and Yellow Border Design are trademarks of the Natlonal Geographic Soclety, used




Evolutionary game theory

Maynard Smith & Price (1973):

e Males often compete for territory, etc. — transmission of genes

e Might expect natural selection to favour maximally effective weapons
and fighting styles for a “total war" strategy, battles to the death

e Instead, a “limited war" type is common

e 'Group selection’ type explanation was accepted explanation

13



Evolutionary game theory

e Maynard Smith & Price recast the game theory into biological
context:
e 'Game’ — interaction that determines fitness (e.g. snakes fighting
for territory)
e ‘Strategy’ — genetically encoded behaviour or trait
e 'Player’ — individual animal, though better to think of as gene
e ‘Payoff’ — fitness
e Recall the four processes of population genetics:
1. Selection
2. Mutation
3. Genetic drift
4. Gene flow
Basic evolutionary game theory only includes the first (replicator
dynamics), and second (ESS, adaptive dynamics), though can be
extended to include others

14



Evolutionary game theory - Hawk-Dove

e Apply ‘hawk-dove’ game to our snakes
case-study
e Here ‘hawk’ and ‘dove’ don't refer to literal
species of birds, they are terms from politics
and foreign policy
e e.g. “John Bolton, a known hawk, has

advocated for pre-emptive strikes against
North Korea”

e A hawkish strategy for snakes is to use their
powerful venom against each other

15



Evolutionary game theory - Hawk-Dove

e Two animals contesting a favoured resource or territory with value V
e Losing a fight over it has an injury cost C

e Important: the cost of losing the fight is greater than the value of
the resource itself

V<C

Makes sense for our snakes example

16



Evolutionary game theory - Hawk-Dove

e Fill in matrix:
, hi| ¥ * o

e V vs 0: a hawk will take the whole COOPERATE____DEFECT
resource from a dove, dove gets ¥ % v/2 v
nothing §ll vz 0

e V//2: 50% chance of V, 50% chance t o | v-orz
of nothing o

e (V — C)/2: if two hawks, still a 50% i | I a2l

chance of winning, but also a 50%
chance of incurring cost —C

e Important: (V —C)/2<0

17



Find Nash equilibria

Remember: V < C

MXB261 analysis: hd. 'l 2 !

e Two pure-strategy Nash coerTERT el
ilibria:
equili r*la * E v/2 v
1. (x',x3) = (dove, hawk) & w
2. (x1,x5) = (hawk, dove) b4
o
e One mixed-strategy Nash 1
equilibrium: V//C 0 (V-C)/2

DEFECT

\"/ (V-C)/2

18



Evolution game theory - Hawk-Dove

e Analysis for symmetric pure Nash

S Remember: V < C
equilibria:

e Recall f(x*,x*) > f(x,x™) for all x ki 2
e Hawk-hawk i.e. total war? e
e f(hawk, hawk) < f(dove, hawk) ¥ v
e Dove-dove, i.e. peace? 8 0
e f(dove,dove) < f(hawk, dove) 1 . (V-C)/2
e No symmetric pure Nash equilibrium 15 v (v-C)/2

19



Evolutionary game theory - Hawk-Dove

e Hastings (textbook) investigates a
mixed strategy, where players pursue

‘hawk’ or ‘dove’ with some probability

Y * o

e But if strategy genetically encoded,
what will happen?

e |dea: look at the evolution of the
proportions of hawk- and
dove-strategests in a population

e Move from two players to many

players

CoOPERATE __ bEFECT
E V/2 v

8| vz 0

. o | wvonr
£l v (V-C)/2

e Provides an example for replicator
dynamics

20



Aside: Maynard Smith concept of ESS

e Symmetric Nash equilibrium f(x*, x*) > f(x, x*) for all x

e Maynard Smith concept of an evolutionarily stable strategy (ESS),
two criteria:
1. f(x*,x") > f(x,x™) for all x OR
2. 2.1 f(x*,x*) = f(x,x*) AND
2.2 f(x*,x) > f(x,x) for all x
e Meaning of two ESS criteria:
1. Strong ESS: no alternative strategy can invade
2. Weak ESS: if an alternative strategy is neutral, x* cannot be
eliminated from population
ESS — Nash equilibrium
e For these 2-strategy games they are equivalent

21



Replicator dynamics overview

e Agents need not be rational, or even conscious:

e All they need is a strategy that they pass on

‘Goal’: produce as many replicates of oneself as possible
e Assume: no change in strategy, no mutation to new strategy

e Interested in change in distribution of strategies in population

22



Replicator dynamics

Population with genetically-encoded strategy (e.g., cooperate/defect)

@,

Population (n)
Game Rules
Replicator Rules

(HowieKor, Creative Commons)
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Replicator dynamics

Play game, receive payoffs

w
i
S
«©
-
S
8
g
o«

(HowieKor, Creative Commons)
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Replicator dynamics

High payoffs — more offspring

“
o
S
o
o
£
]
(U]

(HowieKor, Creative Commons)
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Replicator dynamics

New strategy frequencies in population

L2

Game Rules
Replicator Rules
Population (n+1)

Y

(HowieKor, Creative Commons)
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Replicator dynamics equation

Following Chapter 9 of Webb Game Theory

e n;: number of individuals pursuing strategy i

e V: total number of individuals

e p; = n;/N: propn pursuing strategy /, and want dynamics

dpi _ pi= 7
dt o
e | know that p; = , so rearrange that

n; = p;N and take derivatives (use product

rule) :g
ni = piN + p;iN
e Rearrange _
, n; N
pi = N P/N

24



Replicator dynamics equation

e We are here: )
o
pl—N pI/V

e Total pop size is sum of no. of each strategists
N = Z n;
i

SO
N=>"#

So it looks like we need to say something about the dynamics n; to
solve this

25



Replicator dynamics equation

o Let:

e [3: background reproduction
rate

e p: vector [p1, p2, ..., pn] that
sums to 1

@
&
E
[
=
S
2
o
2
a
9
<

e fi(p): fitness effect on
strategy i resulting from the
game rules and current

proportions in population
e Dynamics of i strategists

dn,-
dt

= nj = ni(B +f;)

26



Replicator dynamics equation

e What we have so far: ]
W
pi = N Pi N
with N = Z f; and n; = ni(B + £)

e Sort out our n;/N:

h,’ - n; -
N N(ﬁ + £;)
=pi(B+ 1)
e Sub in:
. N
pi —p,([3+f,)—pw

N——

N
—Pi<ﬁ+fiN

27



Replicator dynamics equation

e What we have so far:
N
i = Pj ==
pi=p <6+ N)

with N =" #; and i; = ni(B + )
e Sort out our N/N

NZ NZ (B+ 1)
—,i/(ﬁznﬂrzf;n;)
_ BN i
_W+Z’,:f’N

= 3+ f where f is mean fitness

28



Replicator dynamics equation

e What we have so far:

e Sub in:

pi=pi (B+fi—(B+7))
p=pi(fi—7)
e Makes sense:

e If no i-strategists, p; = 0, stay 0 forever
o |f payoff to i-strategist is higher than average, they will have more
offspring, and proportion will grow in the population

29



Replicator dynamics equation

e Replicator dynamics

pi = pi(fi — )

plicator Rules

e For two strategies

e Subin F:ﬂp1+f2p2
e Subinp=1—p;

o Gives:

pr=pi(l = p1)(fi — f2)

30



Hawk-Dove replicator dynamics

e Replicator dynamics

pH = pH(1 — pr)(fu — fp)

e Fitness effect of hawk strategy fy? 'a X : Dia
V-C g v/2
fu(p) = pH 5 +ppV i v
8l vr2 0
1% t (v-C)/2
fD(p):pH0+PDE Vi ’
sl| v jov-cr2

e Sub pp = (1 — py), rearrange

. V-C %4
PH_pH(l_PH)<PH 5 +(1—pH)2)

31



Hawk-Dove replicator analysis

. dph V-C Vv
=0 o1 — 1— py)—
PH= pH(1 — pr) <PH 5 + (1~ pn) >
d
e Equilibrium? Solve %% =0 = =
\/ .d COOPERATE DEFECT
Ph =0, 1, I N E v/2 v
. - 8|l vz
e Asymptotic stability? °
v o oz
dp
d—pH <0 o4 || v (v-C)/2
PH | py=p;;

32



Hawk-Dove replicator analysis

. V - C V ’ 2 / ’
PH = PH(l _ PH) (PH 5 + (1 — pH)E) (uvw)" = u"vw + uv’'w + uvw
. 2
de vV-C Vv 'hd coo;gnm DEF%:T
—— =(1-pn) pH + —(1— pH)
dpy 2 2 g V2
v-Cc v yi !
—pr |\~ pPut+ (1= pn) 8l vi2 0
V—-C V 1 :
+ pu(1l — py) ( 5 5) 1E 0 (e
sl v jv-arz
dp %4
PH =20
de pH=0 2 * O 1 V
i pH — Yy, 4 =
dpy v-c_, C
dpp py=1 B 2 2
ds v v stable: d'DH <0
e === (17—) <0 PH | py=p;;
de PH:% 2 C

33



Hawk-Dove summary - what have we learnt?

I<

e We found a stable steady state py = ¢

e Hastings text book describes in terms of a
mixed strategy (V/C,1— V/C)

e Our question was, why is “limited war"
common?

e Intuitively, male snakes could fight to the
death? (pn =17)
e Maybe they don't for the good of the
species?
e Game theory gives us a reason why ‘limited war' is common, from a
purely individualistic perspective
e Gives us the mathematical machinery we need to take into account
the unintuitive situation where fitness depends on strategies of others

34



Aside: Replicator dynamics vs ESS vs Nash equilibrium

ESS — asymptotically stable — Nash equilibrium

e e.g. variants on rock-scissors-paper have stable replicator dynamics
but are not ESS

e For 2-player 2-strategy games they are all equivalent

35



Adaptive dynamics

e Adaptive dynamics (1990s onwards)
e About evolution of some continuous ‘trait’ in a ‘resident population’
by successive invasions of a mutant traits
e ‘Ecoevolutionary’: feedbacks between ecological dynamics and
evolutionary dynamics
e In replicator dynamics, fitness a function of proportions
e In AD, fitness a function of absolute population size
e Good introduction ‘Hitchhiker’'s guide to Adaptive Dynamics’
(Brannstrom et al. 2013)
e Key assumptions of Adaptive Dynamics
1. Clonal reproduction
2. Small mutational steps and few mutants
e Mutant does not affect fitness of residents but residents’ strategy
affects fitness of mutant
3. Separation of timescales
e Resident population in ecological equilibrium when new mutant
appears

e Clarifies meaning of evolutionary trajectory and end-points

36



Adaptive dynamics example - migratory birds

Reference - Johansson & Jonzén (2012)
e Timing of arrival back from migration

e Arrive too early - cold, low food

e Arrive too late - not enough time to
nest, lay eggs, raise chicks before

winter ] :
1
e So obviously best arrival time is at z ¢ i
K? 5 6 1
peak? £ i
g 49 :
e But there is competition for limited g |
4 I
nesting territories N i
e Those who arrive earlier have a I

arrival time x

better chance at obtaining and
defending a territory
e |f everyone else arrives at peak, may
be better overall for an individual to
arrive a bit earlier?
37



Adaptive dynamics example - visual

Reference - Johansson & Jonzén (2012)

e Combine

e Overall reproduction is hump-shaped

with arrival time

e Greater chance to obtain breeding

fitness of mutant w(y, x)
-

territory with earlier arrival

i
1
I
i
i
I
1
!
0

e Fitness function of mutants when all 5 5 1
arrival time of mutant y

others at reproduction peak

38



Adaptive dynamics example - visual

fitness of mutant w(y, x)
=

[ ) Sy ———

-3 -2 -1
arrival time of mutant y

39
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Adaptive dynamics example - visual

2 T
1
— 1
x 1
~ 1
s I
€ |
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arrival time of mutant y
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Adaptive dynamics example - visual
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Adaptive dynamics example - visual

fitness of mutant w(y, x)

-1 1 2 3
arrival time of mutant y

[ I e L
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Successive invasions move the trait

value in the population to some
evolutionary end-point

AD is about finding where this
end-point is
End-point strategy has two qualities:
1. Evolutionary trajectory will go
towards it: Convergence stability
2. Once there, population cannot be
invaded by alternative strategy:
Evolutionary stability

Continuously stable strategy: Both

evolutionarily stable and convergence
stable

fitness of mutant w(y, x)

[ R AR

-1
arrival time of mutant y

40



Adaptive dynamics - evolutionarily stable

e FEvolutionarily stable strategy: population cannot be invaded by an

Fitness w(y,x)

alternative strategy

e An ESS is a fitness maximum with respect to the mutant trait value

-

Evolutionarily stable

y=x
Trait value y

Fitness w(y,x)

Not evolutionarily stable

y=x
Trait value y

41



mics - check evolutio

e Call fitness w(y, x), where y is mutant trait and x is resident trait

. Find evolutionarily singular strategy x* where
mutant fitness gradient is zero

_ ow(y, x)

X =0

y=x

. Is x* an evolutionarily stable strategy?

Pw(y,x)

57 <0

*

y=Xx
X=X

e Fitness gradient at x* a maximum wrt
change in mutant trait

Fitness w(y,x)

Fitness w(y,x)

Evolutionarily stable

y=x
Trait value y

Not evolutionarily stable

y=x
Trait value y

42



Adaptive dynamics - convergence stable

e Convergence stable strategy: evolutionary trajectory will approach it
e The fitness gradient has a negative slope with respect to changes in

the resident strategy

Convergent stable Not convergent stable

-~ -~

3 2

-~ ~ P

N— N—

= N =

wn ! wn ! \
7] 0]

0} Q

= / =

=1 3=

i3 i3 /

Trait value y Trait value y
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mics - check convergence stability

e Call fitness w(y, x), where y is mutant trait and x is resident trait

. From before you have the mutant fitness
gradient:

ow(y, x)

8x = By

y=x

. Is x* a convergence stable strategy?

98x

0
dx <

*

X=X

e Fitness gradient at x™ a maximum wrt
change in resident trait

Fitness w(y,x)

Fitness w(y,x)

Convergent stable

i

TN

y=x
Trait value y

Not convergent stable

A

/' \

£

y=x
Trait value y

a4



Aside: Adaptive dynamics and speciation

e How could an evolutionarily singular strategy be convergence stable

but not evolutionarily stable?

NAe L

Trait value

Fitness

Trait value

Trait value

e The singular strategy can be invaded on both sides in the trait-value

space
e Linked to speciation, see Dieckmann & Doebeli (1999, Nature)
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Adaptive dynamics worked example - preliminaries

First consider population all following same

strategy: resident strategy x

e No. of offspring is a Gaussian-shaped

reproduction R(x)

function of arrival time x

2

R(x) = Roe™ =

e Probability of obtaining a territory: p

e Population dynamics
Nep1 = PR(X) ne

e The no. of individuals at t + 1: the no. at time t, multiplied by the
no. of offspring they have each R(x), multiplied by each offspring’s
probability to obtain a territory for breeding p.

46



Adaptive dynamics worked example - separation of timescales

Population dynamics
ney1 = pR(x) ny

Assume that evolutionary dynamics happening on a slower timescale
than population dynamics

Therefore assume resident population at steady state

*
Nty1=ne=n

Then probability to obtain a territory

47



Adaptive dynamics worked example - very few mutants don’t

affect residents’ fitness

e Residents’ probability of obtaining a territory p,(x) = ﬁ

x)
e What happens if a mutant with a different arrival time y arises?

e Assume one mutant, large enough population, mutant doesn't affect
residents’ fitness

e So the probability that a resident strategist obtains a territory

remains unchanged
1

keep pr(x) = R(x)

48



Adaptive dynamics worked example - mutants affected by resi-

dents’ strategy

e Residents’ probability of obtaining a

territory stays p,(x) = ﬁ

e But a mutant’s probability to obtain a
territory is definitely affected by the
strategy of the many residents

i
i
i
1
i
i
i
1
1
i
i
h
!
0

-3 -2 -1
arrival time of mutant y

mutant probability to win territory p(y, x)

e Assume a linear relationship truncated between 0 and 1
p(y:x) = pr(x) (L +a(x —y))
e Check it makes sense; if y = x
p(x,x) = pr(x) (1 +a(x = x)) = pr(x)

49



Adaptive dynamics worked example - invasion fitness

Fitness is the growth rate ny1/n;

e Recall the resident population dynamics

ney1 = pR(x) n;

so at ny = n* growth rate of resident p,(x)R(x) =1

Fitness of mutant with arrival time y in resident population with x

w(y,x) = p(y,x)R(y)
=p(x)(1+a(x—y))R(y)

Notice the assumptions
1.

Separation of timescales - resident population at ecological
equilibrium

One mutant at a time - resident fitness not affected by mutant, but
mutant fitness affected by resident strategy

50



Adaptive dynamics worked example - find singular strategy

i . . . Evolutionarily stable
Find evolutionarily singular strategy x* i
o g = Lwigf/’x) =0 ; 1
y=x g
e Using: i
w(y,x) = pr(x)(1+a(x —y)) R(y) y=x
Trait value y
e Find the partial derivative wrt y
ow(y, x
% = —R(y) (ap; + yp(y, x))
Yy
e Evaluate partial derivative at the resident strategy
ow(y, x
go= 20X R (ap+ xp0)
2} 20
= —(a+x)
(cancellation because p, = ﬁ)
e x*is when g, =0
—x*=-a

51



Adaptive dynamics worked example - evolutionarily stable?

Evolutionarily stable

Is x* an evolutionarily stable strategy? g
Pw(y,x) 3"
° c')yz y=x < O g
x=x" i
e
e Using: x* = —a e

Trait value y

e Find the second partial derivative wrt y

Pw(y,x
P22 k() (ply 002 ~ 1) + 2200,
e Evaluate second partial derivative at the resident strategy
2
M = R(X)Pr (X2 — 1+ 23)()
oy* |-,
=x? — 1+ 2ax
(cancellation because p, = R(lx))
e Evaluate at x* iy )
o w(y, x 2
— =-1-a"<0
ay?  |y=x, ?
X=X 52



Adaptive dynamics worked example - convergence stable?

Convergent stable

Is x* a convergence stable strategy?

Fitness w(y,x)

dgy
* Ul . <0
e Using: x* = —a g
Trait value y
e Recall w(y.x)
w(y, x
o= 2| =—(a+x)
y y=x

e Find the derivative of g(x) wrt x, evaluate at x*

98«
dx

=-1<0

X=x*

53



Adaptive dynamics worked example - meaning

e To summarise:

e Found a singular strategy x* = —a

e In the example right, I've set a =2

e Found x™ was continuously stable strategy

e What does it mean biologically?

e No. of offspring is maximised at x =0

e However early arrival increases chance to
obtain a territory

e Evolutionary end-point is x* = —a, earlier
than the peak

e The drop-off at the early part of the peak
represents decreased survival with early
arrival, e.g. because of cold weather

reproduction R(x)

fitness of mutant w(y, x)

-3 -2 -1 0 1 2 3
arrival time x

0 1
arrival time of mutant y
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Adaptive dynamics worked example - meaning

e Evolutionary end-point is early arrival in cold weather

Species Date Location Conditions | Numbers  Source

(@) Mortality during spring migration

Various species (>23  April 1881 OffLouisiana  Gale ‘Many Frazar
species) coast thousands'  (1881)
Lapland Longspurs  March Minnesota-  Snowstorm 15milion  Roberts
Calcarius lopponicus 1904 lowa (1507,
1907b)
Mainly Lapland February  Nebraska Snowstorm  ‘Thousands'  Reed
Longspurs Calcarius 1922 (1922),
lapponicus swenk
(1922)
MagnoliaWarblers  May1951  Off Texas Rainstorm >10000 James
Dendroica magnolia coast (1956)
and others (39
species)
Ducks, geese and April 1954 Wisconsin Hailstorm ‘Many Hochbaum
swans (1955)
Various (> 14species)  May1954  Minnesota Snowstorm >175 Frenzell and
Marshall
(1954)

“In each documented example, the migrants could have avoided the cold
spell if they had arrived in breeding areas some days later than they did"
Newton (2007, /bis)
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Prisoner’s dilemma

Two criminals interrogated by the police. If both stay silent, get a lesser
charge (speeding) and 1 year jail. But police the make an offer.

If you testify against the other, and the other doesn't testify, you go free
and they 3 years jail. But if you both testify against each other, both get
2 years jail.
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Prisoner’s dilemma

Two criminals interrogated by the police. If both stay silent, get a lesser
charge (speeding) and 1 year jail. But police the make an offer. If you
testify against the other, and the other doesn't testify, you go free and
they 3 years jail. But if you both testify against each other, both get 2

years jail.
Should the criminals cooperate with each P; 2 e
other and stay silent? .d COOPERATE DEFECT
i 1 ? w
e Socially optimal? : -1 0
e Both cooperate — lowest total jail &
o]
time, 2 years S|l -1 -3
e Selfishly optimal? 1 -3 -2

e Both defect — pure (symmetric) Nash

DEFECT

equilibrium
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Generalised Prisoner’s Dilemma and replicator dynamics

e Fitness effects: d>b>a>c
P; 2
fC = pcb + pDC and fD = pCd + pDa .d COOPERATE DEFECT
e Replicator dynamics : b d
§|| b c
pc = pc(1 = pc)(fc — fp) Lo c a
= pc(1—pc){bpc +c(1—pc) —dpc —(1—p)a} | ¥l g |a

e Steady states: pr =0,1
e Check asymptotic stability

9Pe — (1—pe){}—pel} +pc<1—pc)‘jf)j
%

de
= —(b—d) > 0; and apPc =(c—a) <0

dpc pc=1 Pc pc=0 58



Prisoner’s dilemma and the environment

e Two countries. pd 2

COOPERATE DEFECT

A fossil-fuel economy is worth 20 units.

10 14
10 4

A switch to renewables reduces

economic benefit to 10 units.

COOPERATE

But cost of CO, emissions paid by 1
both countries via climate change.

DEFECT

Cost is 6 units per polluting country.

It is in the interests of each country, regardless of what the other is
doing, to keep on polluting.
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The Tragedy of the Commons

Hardin (1968, Science)

e William Forster Lloyd's Tragedy of the Commons
e Herders share a common, limited-size, pasture
e Utility to an individual herder of adding one more sheep is greater
than the cost to themselves, a cost shared by all
e Rational herders will put as many sheep on the commons as possible

Use of the commons is If one or more users increase eventually the
below the carrying the use of the commons land will be unable to
capacity of the land. All beyond its carrying capacity, support the activity.
users benefit. the commons becomes
degraded. The cost of the
Figure 10.2 degradation is incurred by
Environmental Science a" users.

©2012W. H. Freeman and Company
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The Tragedy of the Commo

e Hardin (1968) writing in the context of overpopulation

e ‘They think that farming the seas or developing new strains of wheat
will solve the problem — technologically’

e But the world still is finite.

e Adam Smith's invisible hand: decisions reached individually produce
the best result for the group

e But not invariably true.

e How to solve? Appeal to people’s conscience?

e |f we encourage people of conscience have

fewer babies, then...
e Also creates a ‘double-bind’

e you're immoral if you don't cooperate,

e you're stupid if you do

e Key point is that ToC occurs even if all individuals understand the
consequences of their actions
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e Do you behave like this in daily life?

e Consider the cleaner fish - why doesn't the big
fish just eat it when it's done?

e Consider the vampire bat

e Feeds by biting a small hole in some
mammal and lapping up blood

e Two nights without food will die

e Roost together in colonies in caves

e Bats who had a feed that night will
regurgitate food for those who had none
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but wait

A BAT'S DILEMMA

Game theory can model the choice fo share a meal with a hungry neighbor.

Bat A shares Bat A doesn't share

W ) T 4
L A

Both survive, if a little hungrier. Bat A stays full; Bat B dies.
Bat A filness: 09 Bat B: 0.9 Bat A filness: 1 0

Bat B shares

N Pu.- N

N

Bat B stays full; Bat A dies. Each survives alone; much hungrier.
Bat Afilness: 0 Bat B: 1 Bai A fitness: 0.4

Bat B doesn't share

Olena Shmahalo/Quanta Magazine
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The Axelrod Tournaments

e 1980s Robert Axelrod held a series of ,
tournaments T

e Scientists could submit their code to play PD

e Each algorithm would be played against each
other for multiple rounds of PD

e Notice: repeated plays against same opponent

e So far looked at one-shot PD
e This is the iterated PD

R. Axelrod (left)

e Many clever algorithms submitted

Winner - Anatol Rapoport - with a very simple program tit-for-tat:

1. First play is ‘cooperate’ - be nice
2. Then repeat:
2.1 If opponent played ‘defect’, next play is ‘defect’ - be provokable
2.2 If opponent played ‘cooperate’, next play is ‘cooperate’ - be forgiving
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The usefulness of evolutio game theory

e Small communities actually don't just
overgraze and ruin their commons

e People and other animals do find ways to
cooperate in PD-like situations
e Conditions for cooperation in PD incl.:

1. May play the same player again
2. Ability to recognise other player

e Repeated game like Axelrod's Tournament
e Fixed meeting place, or individual
recognition

3. Unknown number of future games
e But for large-scale problems, like climate change, conditions above
are not met
e Hardin - a necessity that we recognise the problem
e Privatisation? (‘Injustice is preferrable to ruin’)
e ‘Mutual coercion’
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Summ

e Evolutionary game theory
e Game theory introduced to biology from economics / political science
e A way to study Darwinian evolution in a mathematical framework
e Allows fitness to be a function of others’ traits or strategies
e Key concepts
e Symmetric Nash equilibrium
e Replicator dynamics
e Evolutionary and convergence stability sensu adaptive dynamics
e Explanatory power of evolutionary game theory

e Hawk-Dove — explains limited warfare
e Prisoner’'s Dilemma and Tragedy of the Commons

e Explains why cooperation can be difficult to achieve
e lIterated Prisoner’s Dilemma
e One example of how cooperation can evolve
MXB261: Email me if you think this is exciting.
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