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Outline

• Brief history of game theory

• 2-strategy games, evolutionary analysis

• Adaptive dynamics

• Tragedy of the Commons

MXB261: None of this content will be on the exam
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Natural selection

• In previous lectures, you looked at population genetic models like this

pn+1 = u (pn + qn)
2 1

dn
freq. AA

qn+1 = v (pn + qn) (qn + rn)
1

dn
half freq. Aa

rn+1 = w (qn + rn)
2 1

dn
freq aa

dn = u(pn + qn)
2 + 2v(pn + qn)(qn + rn) + w(qn + rn)
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where u, v ,w are fitness.

• Where does fitness come from?

• Previously assumed a constant, reflecting something about a static

or averaged environment,

• But might be more complicated than that
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Fitness depends on genotypes and frequencies of others

Fitness is determined not just by an individual’s own genotype but by the

types and frequencies of other genes in the population

photo BBC

Need some mathematical framework to deal with this

• Game theory

• Came to biology from economics / military
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A brief history of game theory - 1. cooperative game theory

• John von Neumann and Oskar Morgenstern in

1944

• Book – Theory of Games and Economic
Behavior

• “we wish to find the mathematically

complete principles which define ‘rational

behaviour’ for the participants in a social

economy, and to derive from them the

general characteristics of that behaviour”

• Cooperative game theory

• About humans forming coalitions, making

agreements, splitting costs/profits

• e.g. Several nearby towns want a water

supply

• Not yet so interesting to biologists ...

Morgenstern (left) and von Neumann

(right)
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A brief history of game theory - 2. non-cooperative games

• John Nash - non-cooperative games

• A more general theory

• No enforcement mechanisms (e.g. contracts to

split costs) outside the game itself

• Not about coalitions, agreements and

side-payments possible between players, but

rather individual strategies and payoffs

• Individualistic

• ‘Darwinian’ view of the world: each works for

themselves and maximises own payoff

• ‘Games’

• All players are rational and have full information about game

• Players cannot coordinate with each other

• Single-shot

• Only objective is to maximise own payoff
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Example: The stag hunt

Two people go on a hunt. Each can either hunt stag or hunt hare. A

stag is worth more but takes two people. A hare is easily caught alone.

• What should an individualistic rational

player do?

• This is the simplest example of a

‘game’

• 2 players, 2 strategies, a single

symmetric situation
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Example: The stag hunt

Payoff matrix:

• Rows & cols are strategies

• ‘Cooperate’: hunt stag together; or

• ‘Defect’: hunt hare alone.

• Cells are payoffs in each situation

• Player 1 (rows) gets green payoffs

• Player 2 (columns) gets blue payoffs

• Payoffs represent the situation:

• Stag is worth most

• But it takes 2 people to hunt stag,

so if one hunts stag by themselves

then they get nothing

• If both hunt hare, they get 1/2 the

hares each

• MXB261 knows how to find NE
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Example: The stag hunt

Analyse the payoff matrix:

• Imagine yourself as player 1

• If other player hunting stag?

• Best to hunt stag

• If other player hunting hare?

• Best to hunt hare

• Imagine yourself as player 2

• Symmetric game, so the same is true

for player 2

• Notice how individualistic:

• I make the best choice for myself

only

• My best strategy depends on others’

strategy
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Example: The stag hunt

• Notation:

• xi is the pure strategy – ‘stag’ or

‘hare’ – of player i

• f (xi , xj) is the payoff to player i

when i plays xi and j plays xj

• Symmetric Nash equilibrium x∗:

f (x∗, x∗) ≥ f (x , x∗)

for all other strategies x

Notation: payoff to a focal individual is

f (focal individ’s strategy, others’ strategy)
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Example: The stag hunt

• Symmetric Nash equilibrium x∗:

f (x∗, x∗) ≥ f (x , x∗)

for all other strategies x

• The stag hunt has two such equilbria:

1. x∗ = stag

f (stag, stag) > f (hare, stag)

2. x∗ = hare

f (hare, hare) > f (stag, hare)

Notation: payoff to a focal individual is

f (focal individ’s strategy, others’ strategy)
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Example of stag hunt in nature - carousel hunting
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Evolutionary game theory

Maynard Smith & Price (1973):

• Males often compete for territory, etc. → transmission of genes

• Might expect natural selection to favour maximally effective weapons

and fighting styles for a “total war” strategy, battles to the death

• Instead, a “limited war” type is common

• ‘Group selection’ type explanation was accepted explanation
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Evolutionary game theory

• Maynard Smith & Price recast the game theory into biological

context:

• ‘Game’ → interaction that determines fitness (e.g. snakes fighting

for territory)

• ‘Strategy’ → genetically encoded behaviour or trait

• ‘Player’ → individual animal, though better to think of as gene

• ‘Payoff’ → fitness

• Recall the four processes of population genetics:

1. Selection

2. Mutation

3. Genetic drift

4. Gene flow

Basic evolutionary game theory only includes the first (replicator

dynamics), and second (ESS, adaptive dynamics), though can be

extended to include others
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Evolutionary game theory - Hawk-Dove

• Apply ‘hawk-dove’ game to our snakes

case-study

• Here ‘hawk’ and ‘dove’ don’t refer to literal

species of birds, they are terms from politics

and foreign policy

• e.g. “John Bolton, a known hawk, has

advocated for pre-emptive strikes against

North Korea”

• A hawkish strategy for snakes is to use their

powerful venom against each other
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Evolutionary game theory - Hawk-Dove

• Two animals contesting a favoured resource or territory with value V

• Losing a fight over it has an injury cost C

• Important: the cost of losing the fight is greater than the value of

the resource itself

V < C

Makes sense for our snakes example
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Evolutionary game theory - Hawk-Dove

• Fill in matrix:

• V vs 0: a hawk will take the whole

resource from a dove, dove gets

nothing

• V /2: 50% chance of V , 50% chance

of nothing
• (V − C)/2: if two hawks, still a 50%

chance of winning, but also a 50%
chance of incurring cost −C

• Important: (V − C)/2 < 0
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Find Nash equilibria

MXB261 analysis:

• Two pure-strategy Nash

equilibria:

1. (x∗
1 , x

∗
2 ) = (dove, hawk)

2. (x∗
1 , x

∗
2 ) = (hawk, dove)

• One mixed-strategy Nash

equilibrium: V /C

Remember: V < C
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Evolutionary game theory - Hawk-Dove

• Analysis for symmetric pure Nash

equilibria:

• Recall f (x∗, x∗) ≥ f (x , x∗) for all x
• Hawk-hawk i.e. total war?

• f (hawk, hawk) < f (dove, hawk)

• Dove-dove, i.e. peace?

• f (dove, dove) < f (hawk, dove)

• No symmetric pure Nash equilibrium

Remember: V < C
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Evolutionary game theory - Hawk-Dove

• Hastings (textbook) investigates a

mixed strategy, where players pursue

‘hawk’ or ‘dove’ with some probability

• But if strategy genetically encoded,

what will happen?

• Idea: look at the evolution of the

proportions of hawk- and

dove-strategests in a population

• Move from two players to many

players

• Provides an example for replicator

dynamics
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Aside: Maynard Smith concept of ESS

• Symmetric Nash equilibrium f (x∗, x∗) ≥ f (x , x∗) for all x

• Maynard Smith concept of an evolutionarily stable strategy (ESS),

two criteria:

1. f (x∗, x∗) > f (x , x∗) for all x OR
2. 2.1 f (x∗, x∗) = f (x , x∗) AND

2.2 f (x∗, x) > f (x , x) for all x

• Meaning of two ESS criteria:

1. Strong ESS: no alternative strategy can invade

2. Weak ESS: if an alternative strategy is neutral, x∗ cannot be

eliminated from population

ESS → Nash equilibrium

• For these 2-strategy games they are equivalent
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Replicator dynamics overview

• Agents need not be rational, or even conscious:

• All they need is a strategy that they pass on

• ‘Goal’: produce as many replicates of oneself as possible

• Assume: no change in strategy, no mutation to new strategy

• Interested in change in distribution of strategies in population
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Replicator dynamics

Population with genetically-encoded strategy (e.g., cooperate/defect)

(HowieKor, Creative Commons)
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Replicator dynamics

Play game, receive payoffs

(HowieKor, Creative Commons)
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Replicator dynamics

High payoffs → more offspring

(HowieKor, Creative Commons)
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Replicator dynamics

New strategy frequencies in population

(HowieKor, Creative Commons)
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Replicator dynamics equation

Following Chapter 9 of Webb Game Theory

• ni : number of individuals pursuing strategy i

• N: total number of individuals

• pi = ni/N: propn pursuing strategy i , and want dynamics

dpi
dt

= ṗi = ?

• I know that pi =
ni
N , so rearrange that

ni = piN and take derivatives (use product

rule)

ṅi = ṗiN + pi Ṅ

• Rearrange

ṗi =
ṅi
N

− pi
Ṅ

N
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Replicator dynamics equation

• We are here:

ṗi =
ṅi
N

− pi
Ṅ

N

• Total pop size is sum of no. of each strategists

N =
∑
i

ni

so

Ṅ =
∑
i

ṅi

So it looks like we need to say something about the dynamics ṅi to

solve this
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Replicator dynamics equation

• Let:

• β: background reproduction

rate

• p: vector [p1, p2, . . . , pn] that

sums to 1

• fi (p): fitness effect on
strategy i resulting from the

game rules and current

proportions in population

• Dynamics of i strategists

dni
dt

= ṅi = ni (β + fi )
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Replicator dynamics equation

• What we have so far:

ṗi =
ṅi
N

− pi
Ṅ

N

with Ṅ =
∑
i

ṅi and ṅi = ni (β + fi )

• Sort out our ṅi/N:

ṅi
N

=
ni
N
(β + fi )

= pi (β + fi )

• Sub in:

ṗi = pi (β + fi )− pi
Ṅ

N

= pi

(
β + fi −

Ṅ

N

)
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Replicator dynamics equation

• What we have so far:

ṗi = pi

(
β + fi −

Ṅ

N

)
with Ṅ =

∑
i

ṅi and ṅi = ni (β + fi )

• Sort out our Ṅ/N:

Ṅ

N
=

1

N

∑
i

ṅi =
1

N

∑
i

ni (β + fi )

=
1

N

(
β
∑
i

ni +
∑
i

fini

)

=
βN

N
+
∑
i

fi
ni
N

= β + f̄ where f̄ is mean fitness
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Replicator dynamics equation

• What we have so far:

ṗi = pi

(
β + fi −

Ṅ

N

)

Ṅ

N
= β + f̄

• Sub in:

ṗi = pi
(
β + fi − (β + f )

)
ṗ = pi

(
fi − f

)
• Makes sense:

• If no i-strategists, pi = 0, stay 0 forever

• If payoff to i-strategist is higher than average, they will have more

offspring, and proportion will grow in the population
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Replicator dynamics equation

• Replicator dynamics

ṗi = pi (fi − f̄ )

• For two strategies

• Sub in f̄ = f1p1 + f2p2

• Sub in p2 = 1− p1

• Gives:

ṗ1 = p1(1− p1)(f1 − f2)
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Hawk-Dove replicator dynamics

• Replicator dynamics

ṗH = pH(1− pH)(fH − fD)

• Fitness effect of hawk strategy fH?

fH(p) = pH
V − C

2
+ pDV

fD(p) = pH 0 + pD
V

2

• Sub pD = (1− pH), rearrange

ṗH = pH(1− pH)

(
pH

V − C

2
+ (1− pH)

V

2

)

31



Hawk-Dove replicator analysis

ṗH =
dpH
dt

= pH(1− pH)

(
pH

V − C

2
+ (1− pH)

V

2

)

• Equilibrium? Solve dpH
dt = 0

p∗H = 0, 1,
V

C

• Asymptotic stability?

dṗH
dpH

∣∣∣∣
pH=p∗

H

< 0
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Hawk-Dove replicator analysis

ṗH = pH(1− pH)

(
pH

V − C

2
+ (1− pH)

V

2

)

dṗH

dpH
= (1− pH)

(
V − C

2
pH +

V

2
(1− pH)

)
− pH

(
V − C

2
pH +

V

2
(1− pH)

)
+ pH(1− pH)

(
V − C

2
−

V

2

)
dṗH

dpH

∣∣∣∣
pH=0

=
V

2
> 0

dṗH

dpH

∣∣∣∣
pH=1

= −
V − C

2
> 0

dṗH

dpH

∣∣∣∣
pH= V

C

= −
V

2

(
1−

V

C

)
< 0

(uvw)′ = u′vw + uv′w + uvw′

p∗H = 0, 1,
V

C

stable:
dṗH
dpH

∣∣∣∣
pH=p∗

H

< 0
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Hawk-Dove summary - what have we learnt?

• We found a stable steady state pH = V
C

• Hastings text book describes in terms of a

mixed strategy (V /C , 1− V /C )

• Our question was, why is “limited war”

common?

• Intuitively, male snakes could fight to the

death? (pH = 1?)

• Maybe they don’t for the good of the

species?

• Game theory gives us a reason why ‘limited war’ is common, from a

purely individualistic perspective

• Gives us the mathematical machinery we need to take into account

the unintuitive situation where fitness depends on strategies of others
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Aside: Replicator dynamics vs ESS vs Nash equilibrium

ESS → asymptotically stable → Nash equilibrium

• e.g. variants on rock-scissors-paper have stable replicator dynamics

but are not ESS

• For 2-player 2-strategy games they are all equivalent
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Adaptive dynamics

• Adaptive dynamics (1990s onwards)

• About evolution of some continuous ‘trait’ in a ‘resident population’

by successive invasions of a mutant traits
• ‘Ecoevolutionary’: feedbacks between ecological dynamics and

evolutionary dynamics
• In replicator dynamics, fitness a function of proportions

• In AD, fitness a function of absolute population size

• Good introduction ‘Hitchhiker’s guide to Adaptive Dynamics’

(Brännström et al. 2013)

• Key assumptions of Adaptive Dynamics

1. Clonal reproduction
2. Small mutational steps and few mutants

• Mutant does not affect fitness of residents but residents’ strategy

affects fitness of mutant

3. Separation of timescales
• Resident population in ecological equilibrium when new mutant

appears

• Clarifies meaning of evolutionary trajectory and end-points
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Adaptive dynamics example - migratory birds

Reference - Johansson & Jonzén (2012)

• Timing of arrival back from migration

• Arrive too early - cold, low food

• Arrive too late - not enough time to

nest, lay eggs, raise chicks before

winter

• So obviously best arrival time is at

peak?

• But there is competition for limited

nesting territories

• Those who arrive earlier have a

better chance at obtaining and

defending a territory

• If everyone else arrives at peak, may

be better overall for an individual to

arrive a bit earlier?

3 2 1 0 1 2 3
arrival time x

0

2

4

6

8

10

re
pr

od
uc

tio
n 

R(
x)
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Adaptive dynamics example - visual

Reference - Johansson & Jonzén (2012)

• Combine

• Overall reproduction is hump-shaped

with arrival time

• Greater chance to obtain breeding

territory with earlier arrival

• Fitness function of mutants when all

others at reproduction peak

3 2 1 0 1 2 3
arrival time of mutant y

0

1

2

fit
ne

ss
 o

f m
ut

an
t w

(y
,x

)
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Adaptive dynamics example - visual

3 2 1 0 1 2 3
arrival time of mutant y
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Adaptive dynamics example - visual
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Adaptive dynamics example - visual summary

• Successive invasions move the trait

value in the population to some

evolutionary end-point

• AD is about finding where this

end-point is

• End-point strategy has two qualities:

1. Evolutionary trajectory will go

towards it: Convergence stability

2. Once there, population cannot be

invaded by alternative strategy:

Evolutionary stability

• Continuously stable strategy: Both

evolutionarily stable and convergence

stable

3 2 1 0 1 2 3
arrival time of mutant y

0

1

2

fit
ne

ss
 o

f m
ut

an
t w

(y
,x

)
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Adaptive dynamics - evolutionarily stable

• Evolutionarily stable strategy: population cannot be invaded by an

alternative strategy

• An ESS is a fitness maximum with respect to the mutant trait value

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Evolutionarily stable

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Not evolutionarily stable
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Adaptive dynamics - check evolutionary stability

• Call fitness w(y , x), where y is mutant trait and x is resident trait

1. Find evolutionarily singular strategy x∗ where

mutant fitness gradient is zero

gx =
∂w(y , x)

∂y

∣∣∣∣
y=x

= 0

2. Is x∗ an evolutionarily stable strategy?

∂2w(y , x)

∂y2

∣∣∣∣y=x
x=x∗

< 0

• Fitness gradient at x∗ a maximum wrt

change in mutant trait

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Evolutionarily stable

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Not evolutionarily stable
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Adaptive dynamics - convergence stable

• Convergence stable strategy: evolutionary trajectory will approach it

• The fitness gradient has a negative slope with respect to changes in

the resident strategy

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Convergent stable

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Not convergent stable
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Adaptive dynamics - check convergence stability

• Call fitness w(y , x), where y is mutant trait and x is resident trait

1. From before you have the mutant fitness

gradient:

gx =
∂w(y , x)

∂y

∣∣∣∣
y=x

2. Is x∗ a convergence stable strategy?

dgx
dx

∣∣∣∣
x=x∗

< 0

• Fitness gradient at x∗ a maximum wrt

change in resident trait

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Convergent stable

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Not convergent stable
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Aside: Adaptive dynamics and speciation

• How could an evolutionarily singular strategy be convergence stable

but not evolutionarily stable?

1

Trait value

Fi
tn

e
ss 1

Trait value

1

Trait value

• The singular strategy can be invaded on both sides in the trait-value

space

• Linked to speciation, see Dieckmann & Doebeli (1999, Nature)
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Adaptive dynamics worked example - preliminaries

First consider population all following same

strategy: resident strategy x

• No. of offspring is a Gaussian-shaped

function of arrival time x

R(x) = R0e
− x2

2
3 2 1 0 1 2 3

arrival time x

0

2

4

6

8

10

re
pr

od
uc

tio
n 

R(
x)

• Probability of obtaining a territory: p

• Population dynamics

nt+1 = pR(x) nt

• The no. of individuals at t + 1: the no. at time t, multiplied by the

no. of offspring they have each R(x), multiplied by each offspring’s

probability to obtain a territory for breeding p.
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Adaptive dynamics worked example - separation of timescales

• Population dynamics

nt+1 = pR(x) nt

• Assume that evolutionary dynamics happening on a slower timescale

than population dynamics

• Therefore assume resident population at steady state

nt+1 = nt = n∗

• Then probability to obtain a territory

pr (x) =
1

R(x)
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Adaptive dynamics worked example - very few mutants don’t

affect residents’ fitness

• Residents’ probability of obtaining a territory pr (x) =
1

R(x)

• What happens if a mutant with a different arrival time y arises?

• Assume one mutant, large enough population, mutant doesn’t affect

residents’ fitness

• So the probability that a resident strategist obtains a territory

remains unchanged

keep pr (x) =
1

R(x)
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Adaptive dynamics worked example - mutants affected by resi-

dents’ strategy

• Residents’ probability of obtaining a

territory stays pr (x) =
1

R(x)

• But a mutant’s probability to obtain a

territory is definitely affected by the

strategy of the many residents

3 2 1 0 1 2 3
arrival time of mutant y

0.0

0.2

0.4

0.6

m
ut

an
t p

ro
ba

bi
lit

y 
to

 w
in

 te
rri

to
ry

 p
(y

,x
)

• Assume a linear relationship truncated between 0 and 1

p(y , x) = pr (x) (1 + a (x − y))

• Check it makes sense; if y = x

p(x , x) = pr (x) (1 + a (x − x)) = pr (x)
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Adaptive dynamics worked example - invasion fitness

• Fitness is the growth rate nt+1/nt

• Recall the resident population dynamics

nt+1 = pR(x) nt

so at nt = n∗ growth rate of resident pr (x)R(x) = 1

• Fitness of mutant with arrival time y in resident population with x

w(y , x) = p(y , x)R(y)

= pr (x)(1 + a (x − y)) R(y)

• Notice the assumptions

1. Separation of timescales - resident population at ecological

equilibrium

2. One mutant at a time - resident fitness not affected by mutant, but

mutant fitness affected by resident strategy
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Adaptive dynamics worked example - find singular strategy

Find evolutionarily singular strategy x∗

• gx = ∂w(y ,x)
∂y

∣∣∣
y=x

= 0

• Using:

w(y , x) = pr (x)(1 + a (x − y)) R(y)

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Evolutionarily stable

• Find the partial derivative wrt y

∂w(y , x)

∂y
= −R(y) (apr + yp(y , x))

• Evaluate partial derivative at the resident strategy

gx =
∂w(y , x)

∂y

∣∣∣∣
y=x

= −R(x) (apr + xpr )

= − (a+ x)

(cancellation because pr =
1

R(x) )

• x∗ is when gx = 0

→ x∗ = −a
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Adaptive dynamics worked example - evolutionarily stable?

Is x∗ an evolutionarily stable strategy?

• ∂2w(y ,x)
∂y2

∣∣∣y=x
x=x∗

< 0

• Using: x∗ = −a

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Evolutionarily stable

• Find the second partial derivative wrt y

∂2w(y , x)

∂y 2
= R(y)

(
p(y , x)(y 2 − 1) + 2aypr

)
• Evaluate second partial derivative at the resident strategy

∂2w(y , x)

∂y 2

∣∣∣∣
y=x

= R(x)pr
(
x2 − 1 + 2ax

)
= x2 − 1 + 2ax

(cancellation because pr =
1

R(x)
)

• Evaluate at x∗

∂2w(y , x)

∂y 2

∣∣∣∣y=x
x=x∗

= −1− a2 < 0

52



Adaptive dynamics worked example - convergence stable?

Is x∗ a convergence stable strategy?

• dgx
dx

∣∣∣
x=x∗

< 0

• Using: x∗ = −a

1

Trait value y

F
itn

es
s 
w
(y
,x
)

y=x

Convergent stable

• Recall

gx =
∂w(y , x)

∂y

∣∣∣∣
y=x

= − (a+ x)

• Find the derivative of g(x) wrt x , evaluate at x∗

dgx
dx

∣∣∣∣
x=x∗

= −1 < 0

53



Adaptive dynamics worked example - meaning

• To summarise:

• Found a singular strategy x∗ = −a

• In the example right, I’ve set a = 2

• Found x∗ was continuously stable strategy

• What does it mean biologically?

• No. of offspring is maximised at x = 0

• However early arrival increases chance to

obtain a territory

• Evolutionary end-point is x∗ = −a, earlier

than the peak

• The drop-off at the early part of the peak

represents decreased survival with early

arrival, e.g. because of cold weather
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Adaptive dynamics worked example - meaning

• Evolutionary end-point is early arrival in cold weather

“In each documented example, the migrants could have avoided the cold

spell if they had arrived in breeding areas some days later than they did”

Newton (2007, Ibis)
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Prisoner’s dilemma

Two criminals interrogated by the police. If both stay silent, get a lesser

charge (speeding) and 1 year jail. But police the make an offer.

If you testify against the other, and the other doesn’t testify, you go free

and they 3 years jail. But if you both testify against each other, both get

2 years jail.
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Prisoner’s dilemma

Two criminals interrogated by the police. If both stay silent, get a lesser

charge (speeding) and 1 year jail. But police the make an offer. If you

testify against the other, and the other doesn’t testify, you go free and

they 3 years jail. But if you both testify against each other, both get 2

years jail.

Should the criminals cooperate with each

other and stay silent?

• Socially optimal?

• Both cooperate – lowest total jail

time, 2 years

• Selfishly optimal?

• Both defect – pure (symmetric) Nash

equilibrium
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Generalised Prisoner’s Dilemma and replicator dynamics

• Fitness effects:

fC = pCb + pDc and fD = pCd + pDa

• Replicator dynamics

ṗC = pC (1− pC )(fC − fD)

= pC (1− pC ){bpC + c(1− pC )− dpC − (1− pc)a}

• Steady states: p∗C = 0, 1

• Check asymptotic stability

dṗC
dpC

= (1− pC ){ }− pC{ } + pC (1− pC )
d{ }
dpC

dṗC
dpC

∣∣∣∣
pC=1

= −(b−d) > 0; and
dṗC
dpC

∣∣∣∣
pC=0

= (c−a) < 0

d > b > a > c
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Prisoner’s dilemma and the environment

• Two countries.

• A fossil-fuel economy is worth 20 units.

• A switch to renewables reduces

economic benefit to 10 units.

• But cost of CO2 emissions paid by

both countries via climate change.

• Cost is 6 units per polluting country.

It is in the interests of each country, regardless of what the other is

doing, to keep on polluting.
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The Tragedy of the Commons

Hardin (1968, Science)

• William Forster Lloyd’s Tragedy of the Commons

• Herders share a common, limited-size, pasture

• Utility to an individual herder of adding one more sheep is greater

than the cost to themselves, a cost shared by all

• Rational herders will put as many sheep on the commons as possible
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The Tragedy of the Commons

• Hardin (1968) writing in the context of overpopulation

• ‘They think that farming the seas or developing new strains of wheat
will solve the problem – technologically’

• But the world still is finite.

• Adam Smith’s invisible hand: decisions reached individually produce
the best result for the group

• But not invariably true.

• How to solve? Appeal to people’s conscience?

• If we encourage people of conscience have

fewer babies, then...
• Also creates a ‘double-bind’

• you’re immoral if you don’t cooperate,

• you’re stupid if you do

• Key point is that ToC occurs even if all individuals understand the

consequences of their actions
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... but wait

• Do you behave like this in daily life?

• Consider the cleaner fish - why doesn’t the big

fish just eat it when it’s done?

• Consider the vampire bat

• Feeds by biting a small hole in some

mammal and lapping up blood

• Two nights without food will die

• Roost together in colonies in caves

• Bats who had a feed that night will

regurgitate food for those who had none
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... but wait

Olena Shmahalo/Quanta Magazine
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The Axelrod Tournaments

• 1980s Robert Axelrod held a series of

tournaments

• Scientists could submit their code to play PD

• Each algorithm would be played against each

other for multiple rounds of PD

• Notice: repeated plays against same opponent

• So far looked at one-shot PD

• This is the iterated PD

• Many clever algorithms submitted

R. Axelrod (left)

Winner - Anatol Rapoport - with a very simple program tit-for-tat:

1. First play is ‘cooperate’ - be nice

2. Then repeat:

2.1 If opponent played ‘defect’, next play is ‘defect’ - be provokable

2.2 If opponent played ‘cooperate’, next play is ‘cooperate’ - be forgiving
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The usefulness of evolutionary game theory

• Small communities actually don’t just

overgraze and ruin their commons

• People and other animals do find ways to

cooperate in PD-like situations

• Conditions for cooperation in PD incl.:

1. May play the same player again
2. Ability to recognise other player

• Repeated game like Axelrod’s Tournament

• Fixed meeting place, or individual

recognition

3. Unknown number of future games

• But for large-scale problems, like climate change, conditions above

are not met

• Hardin - a necessity that we recognise the problem

• Privatisation? (‘Injustice is preferrable to ruin’)

• ‘Mutual coercion’
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Summary

• Evolutionary game theory

• Game theory introduced to biology from economics / political science

• A way to study Darwinian evolution in a mathematical framework

• Allows fitness to be a function of others’ traits or strategies

• Key concepts

• Symmetric Nash equilibrium

• Replicator dynamics

• Evolutionary and convergence stability sensu adaptive dynamics

• Explanatory power of evolutionary game theory

• Hawk-Dove – explains limited warfare
• Prisoner’s Dilemma and Tragedy of the Commons

• Explains why cooperation can be difficult to achieve

• Iterated Prisoner’s Dilemma

• One example of how cooperation can evolve

MXB261: Email me if you think this is exciting.
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