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Humans are cooperative

• Introspection — ‘I am a moral being’

• Humans are a highly cooperative

speces

• Eusocial insects – relatives

• Humans – cooperate with

non-relatives, strangers
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Why cooperate?

• Cooperate = help others at a cost to yourself

• Why help others at a cost to yourself?

• Seems to violate Darwinian logic

• Tricky to think about costs and

benefits

• So others will help you in the future?

• So you’ll get a good reputation?

• Game theory: put cooperation problem in its purest form so we can

think about it clearly
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Public goods game example

• Example:

1. Public good that multiplies

contributions by 1.2

2. Everyone contributes →
maximise total payoffs

3. However, not contributing

maximises individual payoff

$60

$72

$80

$96

x 1.2

$20 $20 $20 $20 $20 $20 $20

$24 $24 $24 $24 $18 $18 $18 $18

$0 $0 $0 $0 $20$0 $0 $0

$24 $24 $24 $24 $18 $38$18 $18

x 1.2

(a) (b)

• Never makes sense to contribute

• Returns are split equally
• Marginal per-capita return = 1.2/4 = 0.3 < 1

• 30c return for every $1 contributed
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How do people really behave in linear PGGs?

• Example: Burton-Chellew et al. (2016, PNAS)

• Elicited contributious in PGG

• Played against a computer

• Computer play presumably removed fairness/empathy considerations

• Contribution level depends on

contribution of others

• Similar results in other studies

• People genuinely seem believe

this is payoff maximising!
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Why do people make this mistake?

• Deeply unnatural scenario

• Previous work has focused on two

‘mistakes’:

1. Mistake one-shot game for iterated

game

2. Mistake anonymous game for one

with reputation concerns

My focus: Mistaking a linear game for a nonlinear one
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Linear public goods game 5

• In a linear game:

• Benefit increases at constant

rate with nbr. cooperators

• No matter how many

cooperators in the group,

always lose by switching from

D to C

• n-player generalisation of the

Prisoner’s Dilemma
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Nonlinear public goods game

Claim: sigmoid benefit functions relevant to our early history
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Note, defectors still get higher payoffs than Cooperators, but we need to

think about it from the perspective of an individual decision-maker.
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Nonlinear public goods game (2)

Switching from defect to cooperate gains you the amount in pink.
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If the tribe is one short of the threshold, you should cooperate.

Depends on your chance to be the ‘pivotal’ player:

• if cooperators rare, don’t cooperate

• if cooperators more common, might make sense to cooperate
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Nonlinear public goods game: evolutionary perspective

• Game-theoretic perspective:

• if cooperators rare: defect

• if cooperators more common: maybe

cooperate

• Translate game-theoretic to

evolutionary perspective:

• gene (or meme) encoding strategy

• higher payoffs → higher reproduction

• Evolutionary perspective:

• if cooperators rare (invasion),

cooperation can’t succeed

• if cooperators common, cooperation

might persist

0

p
u
b
lic

 g
o
o
d

0 1 2 3 4 5 6 7 8

number of cooperators

W

X

Y

Zp
a
y
o
ff

s

X

Z

W

Y

pa
yo

ffs

cooperators
defectors

0 1 2 3 4 5 6 7
nbr. cooperators among n 1 others

X-Z

0

W-Z

ga
in

 fr
om

 sw
itc

hi
ng

 D
 to

 C

11



Replicator dynamics overview

Population with genetically-encoded strategy (e.g., cooperate/defect)

(HowieKor, Creative Commons)
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Replicator dynamics overview

Play game, receive payoffs

(HowieKor, Creative Commons)
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Replicator dynamics overview

High payoffs → more offspring

(HowieKor, Creative Commons)

12



Replicator dynamics overview

New strategy frequencies in population

(HowieKor, Creative Commons)

12



Replicator dynamics

Change in proportion of x-strategists:

ṗx = px

 π̄x −
m∑
i=1

pi π̄i


expected payoff to x-strategists

proportion of x-strategists

expected payoff in population

m is nbr. strategies

• growth rate proportional to how much better x-strategists’ payoffs

are compared to average

Can also apply to cultural learning:

• I will talk in terms of genes and reproduction

• Exact same maths if you want to model ideas and social learning
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Replicator dynamics when groups formed randomly

ṗx = px

(
π̄x −

m∑
i=1

pi π̄i

)expected payoff to x-strategists

• ex : indicator, focal plays strategy x (below: 1 when cooperator)

• gnf: non-focal strategy distribution (below: nbr. cooperators among

nonfocals)

For prehistoric-hunt game:

π̄C =
n−1∑
gnf=0

π(eC , gnf) P[Gnf = gnf] ,

=
n−1∑
gnf=0

π(eC , gnf)

(
n − 1

gnf

)
pgnf

C (1− pC )
n−1−gnf

C ’s payoff when gnf non-focals are C prob. gnf non-focals are C

binomial
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Two main results about nonlinear games

Recommended: Peña et al. (2014, J Theor Biol)

Two main known results:

1. Cooperation can be sustained

• Do people ‘mistake’ linear

games for a nonlinear ones?

2. But cooperation cannot invade

• Imagine a small nbr. of

cooperators invading

defectors...

So how did cooperation even get

started?
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What if, instead of randomly formed groups, groups tend to form with

family members? Then invading Cooperators more likely to be grouped

with other Cooperators.
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Claim: Interactions with family more frequent in the past 10
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Genetically homophilic group formation

colours = strategies; vertical lines divide families

Random group formation

• Infinite population, no members

from the same family

• Each strategy a random draw

from the population

Homophilic group formation

• Individuals prefer to group with

family members

• Members in the same family

have the same strategy

• Rare invading Cooperators

grouped with other Cooperators
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Replicator dynamics with homophilic group formation

ṗx = px

 π̄x −
m∑
i=1

pi π̄i


expected payoff to x-strategists

proportion of x-strategists

expected payoff in population

but now expected payoff:

π̄C =
n−1∑
gnf=0

π(eC , gnf) P[Gnf = gnf | G0 = eC ]

nonfocal strategy distribution depends on focal’s strategy

no longer binomial
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Hisashi’s equation

Ohtsuki (2014, Phil Trans R Soc):

ṗ1 =
n−1∑
gnf=0

n−1∑
ℓ=gnf

(−1)ℓ−gnf

(
ℓ

gnf

)(
n − 1

ℓ

)

[
(1− ρ1 ) ρℓ+1 π(e1, gnf) − ρ1 ( ρℓ − ρℓ+1 π(e2, gnf) )

]relatedness terms

payoff terms

ρℓ: probability that ℓ players sampled from the group without

replacement have strategy 1.
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Higher-order relatedness θl→m

ρℓ: probability that ℓ players sampled from the group without

replacement have strategy 1.

e.g., ρ2: prob. 2 individuals have strategy 1

same ancestor

2 ancestors

ρ2 = θ2→1 p1 + θ2→2 p21

prob. same ancestor prob. strategy-1

prob. two ancestors prob. both strategy-1

In general:

ρℓ =
ℓ∑

m=1

θℓ→m p1
m

sum over nbr. ancestors m

prob. ℓ sampled have m common ancestors

propn. strategy-1 in populatn
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Linear PGG is a function of dyadic relatedness θ2→1 only

• If the PGG is linear, then only need dyadic relatedness (many papers)

ṗ1 = f ( θ2→1 )

dyadic relatedness, Hamilton’s r

• because the n-player game payoff can be written as a sum of payoffs

in 2-player games

π(n)(ex , g
(n)
nf ) ≡

∑
g
(2)
nf

π(2)(ex , g
(2)
nf )

• However, if the payoff function is nonlinear, higher-order relatedness

coefficients needed (e.g., θ3→1, θ3→2, θ4→1, etc.)

• How to get them?
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How do we calculate the higher-order relatedness terms?

From the probabilities Fq of each group family-size distribution q!

Example: Given each family-size distribution q, calculate θ2→1.

partition q θ2→1 | q explanation

F[4] 1 Any 2 will have a common ancestor.

F[3,1]
3
4
× 2

3
= 1

2
Both must be blue (family size 3).

F[2,2] 1× 1
3
= 1

3
Choose any, then its 1 family member.

F[2,1,1]
2
4
× 1

3
= 1

6
Only possible in the partition of 2.

F[1,1,1,1] 0 Not possible.

So if we can calculate all Fq , we can calculate all θl→m and solve the

dynamics.
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Homophilic group-formation models

(a) Leader driven:

• The leader is chosen at random from

the population.

• Leader recruits/attracts kin with

probability h and nonkin with

probability 1− h.

• Group family size distribution

F[ℓ,1,...,1] =

(
n − 1

ℓ− 1

)
hℓ−1(1− h)n−ℓ.

h =: genetic homophily

Leader driven

Members recruit Members attract

(b) (c)

(a)
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Homophilic group-formation models

(b) Members recruit:

• All group members have an equal

chance to recruit the next member.

• Equation in Kristensen et al. (2022)

(c) Members attract:

• Outsiders attracted to kin

• But also attracted to the group as a

whole

• Use Ewens’ formula (Ewen 1972).

h =: genetic homophily

Leader driven

Members recruit Members attract

(b) (c)

(a)

NOTE: can be interpreted in terms of ‘matching rules’ (sensu Jensen & Rigos, 2018, Int J Game

Theory), i.e., strategy homophily, selecting someone with the same strategy or making a ‘mistake’
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Results 15

Recall no-homophily result: cooperation can (sometimes) persist but it

can never invade:
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We want to go backwards in time — increase homophily — and see if

cooperation can invade.
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Results
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Results
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Results

• Cooperation cannot invade a threshold game with random group

formation

• Also true for sigmoid games in general (Peña et al., 2014)

• But can arise through historical homophily
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• For cooperation to persist, either:

• Parameters such that it can be sustained in a well-mixed population

• Some degree of homophily maintained
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Many discrete strategies

• So far, 2 strategies; natural extension, m strategies

• Discrete strategies:

• I could have modelled cooperate and defect as degree of cooperation

— one continuous strategy
• However, some strategies are naturally discrete

• e.g., conditioning on the actions of others

• Shared intentionality (Genty et al., 2020; Tomasello, 2020):

• form a collective ‘we’ with a jointly optimised goal

• make a joint commitment (!?) to the goal

• coordinate our actions towards achieving it
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Commitment

• Commitment is a norm: one should do what one promised

• Commitment distinguishes us from

other apes

• Experimental situations where one

individual receives their reward early

• 3.5-year-old children continue

contributing until their partner also

gets their reward (Hamann et al., 2012)

• chimpanzees don’t distinguish

between continuing to help in an

existing collaboration versus starting

a new one (Greenberg et al., 2010)
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Commitment and coordination

• In the threshold game, hunters are a

bit stupid

• Cooperator will run off to do the

hunt by themselves

• But people don’t really behave this

way; they coordinate

• If we were in this situation, we’d

have a conversation
• That’s also how people behave

experimentally

• e.g., Van de Kragt et al. (1983,

Am Pol Sci Rev)

• Plus, coordination improves the

evolutionary prospects for cooperation!

0

p
u
b
lic

 g
o
o
d

0 1 2 3 4 5 6 7 8

number of cooperators

W

X

Y

Zp
a
y
o
ff

s

30



Coordination 20

• Newton (2017 Games Econ Behav)

‘shared intentionality’ evolves under

fairly general conditions in a public

goods game

Jonathan Newton

Kyoto Uni
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Coordination in a threshold-game example

• Extend the threshold game:

• Coordinating cooperators draw straws to decide who will contribute

• The ability to coordinate entails a small cognitive cost ε
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Coordination in a threshold game example

old threshold game
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• Sustains cooperation where it could not otherwise be sustained

• Can’t invade, but we already know we can overcome this with

homophily
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Coordination improves the prospects for coordination 20

• Coordination improves the prospects for

coordination

• Newton: Coordination can even sustain

cooperation in a linear game!

• ... wait

• It never makes sense to contribute in the

linear game

• It’s true the Defectors can’t invade, but what

about a type who participates in the lottery

but doesn’t follow through?

• Need to include another new strategy: Liars
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New notation

• Subscripts: 0 = focal player; nf = nonfocal players; a = all players

• G random variable for strategy composition, takes values g

j = 0

s2

j = 1

s1

j = 2

s4

j = 3

s2

j = 4

s1

j = 5

s1

• Players: g 0 = (0, 1, 0, 0), g 1 = (1, 0, 0, 0), g 2 = (0, 0, 0, 1), . . .

• Whole-group: ga = (3, 2, 0, 1)

• Nonfocal: gnf = (3, 1, 0, 1)

• g j = ex : player j plays strategy sx (a 1 in the x-th position)
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Many strategies

How does a trait change frequency over time?

George Robert Price

∆px = Cov[ G0,x , W0 ],

dynamics of propn. of sx

focal’s strategy indicator fitness of focal

G0,x =

{
1 if focal strategy sx ,

0 otherwise.
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Many strategies

∆px = Cov[ G0,x , W0 ],

dynamics of propn. of sx

1 if focal plays sx ; 0 otherwise fitness of focal

W0 = s +

vacancies︷ ︸︸ ︷
(1− s )

1 + δ Π0

1 + δ π
survival probability

selection strength focal payoff random variable

avg. payoff in population

Useful identity: Cov[X , aY + b] = a Cov[X ,Y ]

Substituting and rearranging:

∆px ∝ Cov
[
G0,x , Π0

]strategy indicator focal payoff
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Other member accounting

∆px ∝ Cov
[
G0,x , Π0

]focal’s strategy indicator focal payoff

Payoff to the focal individual:

Π0 =
m∑
i=1

G0,i π (e i , Gnf )

1 if focal plays si ; 0 otherwise payoff to si -player

nonfocal strategy composition

Useful identity: Cov[X ,Y ] = E[XY ]− E[X ] E[Y ]

∆px = E
[
G0,x π(ex , Gnf )

]
− px

m∑
i=1

E
[
G0,i π(e i , Gnf )

]
nonfocal strategy composition
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Other member accounting 23

∆px = E
[
G0,x π(ex , Gnf )

]
− px

m∑
i=1

E
[
G0,i π(e i , Gnf )

]nonfocal strategy composition

Let Gnf be the set of all strat. compositions gnf. Then expectations:

E [G0,iπ(e i ,Gnf)] =
∑

gnf∈Gnf

π(e i , gnf) P[G 0 = e i ,Gnf = gnf]

=
∑

gnf∈Gnf

π(e i , gnf) P[G 0 = e i ]︸ ︷︷ ︸
pi

P[Gnf = gnf | G 0 = e i ]

= pi
∑

gnf∈Gnf

π(e i , gnf) P[Gnf = gnf | G 0 = e i ]︸ ︷︷ ︸
πi

Recovered replicator eqn: ∆px ∝ px
(
πx −

∑m
i=1 piπi

)
= px (πx − π) .

But P[Gnf = gnf | G 0 = e i ] is not obvious:

39



Whole-group accounting 24

Idea: draw a group at random, then draw a focal individual.

∆px ∝ Cov
[
G0,x , Π0

]strategy indicator focal payoff

This time, focus on the whole-group distribution.

Π0 =
m∑
i=1

G0,i π̂(e i ,Ga)

new payoff fnc wrt whole-group strategy composition

Using a similar method to before involving covariance identities and

re-arranging, we obtain

∆px =
∑

ga∈Ga

(
ga,x
n

π̂(ex , ga)− px

m∑
i=1

ga,i
n

π̂(e i , ga)

)
P[Ga = ga]

prob. of whole-group strategy composition
40



Prob. of whole-group strategy composition, P[Ga = ga] =?

colours = strategies; vertical lines divide families
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Probability of whole-group strategy composition 25

Probability of strategywise family-size distribution:

P[Ga = ga] =
∑

z∈Zga

Fy C (z) A(z ,p)

get from homophilic group-formation model

count of multiset permutations
prob. families’ strategies

A(z ,p) =
m∏
i=1

p
∥z i∥
i

nbr. families pursuing strategy si

Analogous to the power terms in 2-strategy game, e.g.,

ρ2 = θ2→1 p1 + θ2→2 p
2
1
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Whole-group accounting

Bringing it all together:

∆px ∝
∑

ga∈Ga

(
ga,x

n
π̂(ex , ga)− px

m∑
i=1

ga,i

n
π̂(e i , ga)

) ∑
z∈Zga

C(z) A(z, p) Fsum(z)


sum over group strategy compositions

prob. focal pursues sx over strategywise family-sizes

• Not as intuitive as the traditional replicator equation

• ∆px ∝ px (πx − π)

• Might be useful from computational perspective because we’ve split

homophily calculations off from strategy identity

• Now it’s clearer how to calculate P[Gnf = gnf | G 0 = e i ]
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Aside: Payoff-matrix transformation example (2 players) 28

• Idea: transform payoffs so they take into account homophily

• Well-mixed game: ṗi = pi (πi − π) = pi (( A p)i − pT A p), where
ai,j = π(e i , e j),

π =


π1

.

.

.

πm

 =
fo
ca
l’
s
st
ra
t.

←
−−
−−
−−

nonfocal’s strategy−−−−−−−−−→
a1,1 . . . a1,m
.
.
.

.

.

.

am,1 . . . am,m




p1
.
.
.

pm

 =


a1,1p1 + . . . + a1,mpm

.

.

.

am,1p1 + . . . + am,mpm



• Now with homophily, dyadic relatedness θ2→1

B = (1− θ2→1)


a1,1 . . . a1,m
.
.
.

.

.

.

am,1 . . . am,m


︸ ︷︷ ︸
i matched with random with prob. 1 − θ2→1

+ θ2→1


a1,1 . . . a1,1
.
.
.

.

.

.

am,m . . . am,m


︸ ︷︷ ︸

i matched with i with prob. θ2→1

• Dynamics of A with homophily ≡ dynamics of B well-mixed

ṗi = pi (( B p)i − pT B p)
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Aside: Payoff transformation n players

Seeking a solution to:
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Payoff transformation n players

bu =
∑
q⊢n

Fq

∑
q0∈q

q0
n|Jq0,q |

 ∑
j∈Jq0,q

au j


get from group-formation model

Code to calculate it on Github:

1. Numerically: TransmatBase class functions/transmat base.py.

2. Symbolically: functions/symbolic transformed.py.

But why would you want to do this?

• B is expensive to calculate, but matrix multiplication is optimised,

can be worth the trade-off when finding steady states

• Use maths from well-mixed case, e.g., Jorge Peña’s analysis

techniques (example in appendix)
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Coordinated cooperation 30

• Game with 4 strategies:

1. D: unconditional Defector, never contributes
2. C : Coordinating cooperator, hold lottery, follow through if chosen

• Nbr. contributors τ = threshold, or inflection point if sigmoid

3. L: Liar, participate in lottery, never contributes

4. U: Unconditional cooperator, always contributes

• C and L pay cognitive cost ε regardless of game outcome

• U and C pay contribution cost c if contributing

• Explore the range from linear to threshold game

0 1 2 3
0.0

0.5

1.0

be
ne

fit

(a)
= 0

0 1 2 3
number of contributors

(b)
= b/8

0 1 2 3

(c)
= b/3

Example 3-player - symbolic analysis

Example 8-player - numerical analysis
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How to read results 32

D C
Cooperators

LU U

U

nconditional Cooperators iars

oordinatingUnconditional efectors

separatrix

• Evolutionary dynamics for a given homophily level h

• Dynamics inside a triangular pyramid

• The points represent a population with just one strategy, lines 2

strategies, triangles 3

• Blue points are stable in that dimension, red points unstable
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Results 1: fairly nonlinear benefits function

h = 1

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.645

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.5

D C

LU U

U
49



Results 1: fairly nonlinear benefits function

h = 0.4

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.3

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.26

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.24

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.19

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.15

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.11

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.106

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.1031

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.1026

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0.08

D C

LU U

U
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Results 1: fairly nonlinear benefits function

h = 0

D C

LU U

U
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Results 2: more linear benefits function 40

h = 0.18

D C

LU U

U
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Results 2: more linear benefits function 40

h = 0.12

D C

LU U

U
50



Results 2: more linear benefits function 40

h = 0.08

D C

LU U

U

h = 0

D C

LU U

U
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Results summary

(a) more nonlinear (b) more linear

invad.

D uninv.

U uninvadable U invadable

invadable

U+D

U+C uninvadable

h = 0.15

perfect homophily no homophily

L invadable

separatrix

C+D uninv.

U+D

D uninvadable

perfect homophily no homophily

L invadable

U+C uninvadable invadable

U uninvadable U invadable

invad.C+D uninv.

separatrix

C+D+L

uninvadable state

invadable state

transient state

trajectory after invasion

Legend:

• Results:

1. Coordination allows cooperation where it cannot otherwise persist

2. First arose through kin selection
3. To persist in modern scenario, either:

• Keep some degree of homophily in modern interactions

• Payoff function non-linear enough

51



Talk summary

• Mathematical framework combines discrete-strategy group games

with kin selection (or ‘matching rules’)

• Investigate: how cooperation first arose, and how it can persist

github.com/nadiahpk nadiah.org
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