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Humans are cooperative

e Introspection — ‘Il am a moral being’

e Humans are a highly cooperative
speces

e Eusocial insects — relatives

e Humans — cooperate with
non-relatives, strangers




Why cooperate?

Cooperate = help others at a cost to yourself

Why help others at a cost to yourself?

Seems to violate Darwinian logic

Tricky to think about costs and
benefits
e So others will help you in the future?
e So you'll get a good reputation?

Game theory: put cooperation problem in its purest form so we can
think about it clearly



Public goods game example

e Example:
1. Public good that multiplies
contributions by 1.2
2. Everyone contributes —
maximise total payoffs

3. However, not contributing por S
maximises individual payoff l l l i i i i

e Never makes sense to contribute

e Returns are split equally
e Marginal per-capita return = 1.2/4 =03 < 1

e 30c return for every $1 contributed



How do people really behave in linear PGGs?

e Example: Burton-Chellew et al. (2016, PNAS)

e Elicited contributious in PGG

e Played against a computer

e Computer play presumably removed fairness/empathy considerations
e Contribution level depends on

contribution of others

Similar results in other studies

Mean human response (0-20 MU)

People genuinely seem believe

this is payoff maximising!

Computer contribution (0-20 MU)



Why do people make this mistak

e Deeply unnatural scenario »

e Previous work has focused on two
‘mistakes’:

1. Mistake one-shot game for iterated
game

Mean human response (0-20 MU)

2. Mistake anonymous game for one °
with reputation concerns

My focus: Mistaking a linear game for a nonlinear one

Computer contribution (0-20 MU)



Linear public goods game

Y
= cooperators
e In a linear game: e | defectors rw
e Benefit increases at constant %
g Q Lz
rate with nbr. cooperators
e No matter how many - X
. (2]
cooperators in the group, £
. . o
always lose by switching from =18 0
DtoC es
se Fx-z
N E
e n-player generalisation of the <
M N g T T T T T T T T
Prisoner’s Dilemma ® 01 5 3 4 5 6 71

nbr. cooperators among n — 1 others



Nonlinear public goods game

Claim: sigmoid benefit functions relevant to our early history
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Note, defectors still get higher payoffs than Cooperators, but we need to
think about it from the perspective of an individual decision-maker.



Nonlinear public goods game

Switching from defect to cooperate gains you the amount in pink.

3 | ™ " M
o = cOOperators
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nbr. cooperators among n — 1 others

If the tribe is one short of the threshold, you should cooperate.
Depends on your chance to be the ‘pivotal’ player:

e if cooperators rare, don't cooperate

e if cooperators more common, might make sense to cooperate
10



Nonlinear public goods game: evolutionary perspective

e Game-theoretic perspective:
e if cooperators rare: defect
e if cooperators more common: maybe
cooperate
e Translate game-theoretic to
evolutionary perspective:
e gene (or meme) encoding strategy
e higher payoffs — higher reproduction
e Evolutionary perspective:
e if cooperators rare (invasion),
cooperation can't succeed
e if cooperators common, cooperation
might persist

public good

payoffs

T T
012

payoffs

gain from switching
DtoC

o &
ud
o
<
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T
3
number of cooperators

= cooperators
= defectors

0 1 2 3 4 5 6 7

nbr. cooperators among n — 1 others
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Replicator dynamics overview

Population with genetically-encoded strategy (e.g., cooperate/defect)

@,

Game Rules

Population (n)
Replicator Rules

(HowieKor, Creative Commons)
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Replicator dynamics overview

Play game, receive payoffs
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(HowieKor, Creative Commons)
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Replicator dynamics overview

High payoffs — more offspring
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(HowieKor, Creative Commons)
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Replicator dynamics overview

New strategy frequencies in population

L2

Game Rules
Replicator Rules
Population (n+1)

Y

(HowieKor, Creative Commons)
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Replicator dyna

Change in proportion of x-strategists:

m is nbr. strategies

expected payoff to x-strategists i

) m
px = Px Tx — Z piTi
i=1

proportion of x—strategistsT

Texpected payoff in population

e growth rate proportional to how much better x-strategists’ payoffs
are compared to average

Can also apply to cultural learning:

e | will talk in terms of genes and reproduction

e Exact same maths if you want to model ideas and social learning

13



Replicator dynamics when groups forme

expected payoff to x-strategists

1 m
px = Px Tx — Z piT;
i=1

e e, indicator, focal plays strategy x (below: 1 when cooperator)
e g, non-focal strategy distribution (below: nbr. cooperators among
nonfocals)

For prehistoric-hunt game:

C'’s payoff when g,¢ non-focals are C prob. g,¢ non-focals are C
n—1 l l
e = Z 71—(‘EC,gnf) IP)[an = gnf] ) binomial

&nt=0 ﬁ
n—1 no1
= Z Tr(eCa gnf) ( Bt >p%“f(1 _ pC)n—l—gnf

gnr=0
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Two main results about nonlinear games

Recommended: Pefia et al. (2014, J Theor Biol)

Two main known results:

1 1 nbr. cooperators among n — 1 others
1. Cooperation can be sustained r. cooperators among 1 othe
e Do people ‘mistake’ linear = cooperators :;,
. £ = defectors
games for a nonlinear ones? S
©
o

2. But cooperation cannot invade

e Imagine a small nbr. of fw-z
cooperators invading

|
|

defectors...

So how did cooperation even get 0 17 27 377 47 57 67 1
propn. cooperators in population pc
started?

What if, instead of randomly formed groups, groups tend to form with
family members? Then invading Cooperators more likely to be grouped
with other Cooperators.
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Interactions with family more frequent in the past

(ka)
symbolic items . q
& transport social care large game hunting technology
4000
first marrow extraction? [in 1]
3000
marrow extraction [in 1] first Oldowan tech
first early carcass access? l3]
2000 widespread butchery [in 1, 6] endurance running [5]
raw material < 1km [13] toothless hominin [in 2] possible early carcass access [4] first Acheulean tec]
raw material < 13 km [13] hand-axe, confront'l scavenging? [7]
raw material < 15 km [13] regular early carcass access [4]
1000
hafting points? (8]
stylistically diverse points [in 13]
500 perforated horse scapula [in 8]
400 craniosinostosis child [in 2] first simple spear [9, 10]
300 ochre, obsidian >25 km [16] neanderthal examples simple spears [in 11]
hafted spears [in 11]
200
first shell beads? [18]
~200 km obsidian [in 13 spear throwing tech? [in 11]
100 bow and arrow [in 11]
50
beads everywhere [20]
40
30 ochre 125 km [15]
shell beads 300-500 km [14] large-scale fishing [12]
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Genetically homophilic group formation

colours = strategies; vertical lines divide families

Random group formation

e Infinite population, no members
from the same family

e Each strategy a random draw
from the population

17



Genetically homophilic group formation

colours = strategies; vertical lines divide families

Random group formation Homophilic group formation

e Infinite population, no members e Individuals prefer to group with
from the same family family members

e Each strategy a random draw e Members in the same family
from the population have the same strategy

e Rare invading Cooperators
grouped with other Cooperators

17



expected payoff to x-strategists

) m
px = Px Tx — Z piTi
i=1

proportion of X—Stt’ategiStST

expected payoff in population

but now expected payoff:
no longer binomial
n—1 ‘;
c = Z m(ec, gnt) P[Gut = gut | Go = ec]

&nt=0
nonfocal strategy distribution depends on focal's strategy
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Hisashi’s equation

Ohtsuki (2014, Phil Trans R Soc):

5 $tere(2)()
8nf 14

gnt=0f=gns
relatedness terms
v Vol l
[(1* p1) per1 m(er,gur) — p1(pe — per1 (€2, 8ur) )}
T payoff terms T

pe: probability that ¢ players sampled from the group without
replacement have strategy 1.
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her-order relatedness 0,_,,,

pe: probability that ¢ players sampled from the group without

replacement have strategy 1.
same ancestor

e.g., p2: prob. 2 individuals have strategy 1 mDu
[ ]

prob. same ancestor prob. strategy-1 2 ancestors

2
p2= 6251 p1 + 0252 pi
prob. two ancestorsT Tprob. both strategy-1

In general:

sum over nbr. ancestors m

‘L prob. ¢ sampled have m common ancestors

4
pe= Z Oosm P "
m=1 Tpropn. strategy-1 in populatn

20



Linear PGG is a function of dyadic relatedness 0,_.; only

e If the PGG is linear, then only need dyadic relatedness (many papers)

p1=f(61)

dyadic relatedness, Hamilton's rT

e because the n-player game payoff can be written as a sum of payoffs
in 2-player games

(ex?gn ) = Z eX7gnf
gnf

e However, if the payoff function is nonlinear, higher-order relatedness
coefficients needed (e.g., 031,032,041, etc.)

e How to get them?

21



How do we calculate the higher-order relatedness terms?

From the probabilities Fq of each group family-size distribution q!

Example: Given each family-size distribution q, calculate 6,_.;.

partition ¢ 62,1 | q explanation
Fla) XXX 1 Any 2 will have a common ancestor.
Fiz.1 % X % = % Both must be blue (family size 3).
F2,2) 1x % = % Choose any, then its 1 family member.
F[er_’l] @ o0 % X % = é Only possible in the partition of 2.
Flia,1,) @e[C]e] 0 Not possible.

So if we can calculate all Fq4, we can calculate all §,_,,, and solve the
dynamics.
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Homophilic group-formation models

h =: genetic homophily
(a) Leader driven: )
e The leader is chosen at random from

i e
the population. K |

i i . Leader driven
e Leader recruits/attracts kin with

o . . (b) (C)es:
probability h and nonkin with )
AN AN
probability 1 — h. (' i
\ S
e Group family size distribution i (' i i
o'e e 5.\. °
[€.1,....1] = 0 — 1 (1 ) ° oo oo o'
Tewy Teey
Members recruit Members attract

23



Homophilic group-formation models

(b) Members recruit: h =: genetic homophily

e All group members have an equal @

chance to recruit the next member. /i\i
e Equation in Kristensen et al. (2022) Leader driven
(b) s
(c) Members attract: \ e
e Outsiders attracted to kin e ('\! o
e But also attracted to the group as a !\. (' !\! o
whole L | '\ 104 X | '\
[ o 000
e Use Ewens’' formula (Ewen 1972). ey Teey
Members recruit Members attract

NOTE: can be interpreted in terms of ‘matching rules’ (sensu Jensen & Rigos, 2018, Int J Game

Theory), i.e., strategy homophily, selecting someone with the same strategy or making a ‘mistake’
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Results

Recall no-homophily result: cooperation can (sometimes) persist but it
can never invade:

nbr. cooperators among n — 1 others nbr. cooperators among n — 1 others
0 2 3 4 5 6 7 0 2 3 4 5 6 7
= cooOperators Fw = cOOperators
£ m— defectors £ = defectors rw
o o
> >
© ©
Q Q Lz
Lz
T T T T T T T T FX T T T T T T T T FX
Fw-z Fw-z
. A )
Q. S
A ‘2 H i 0
- 0
CNSN— T —
0 17 2/7 347 47 5/7 67 1 0 17 2/7 347 47 5/7 67 1
propn. cooperators in population pc propn. cooperators in population pc
We want to go backwards in time — increase homophily — and see if

cooperation can invade.
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payoffs

Pc

nbr. cooperators among n — 1 others
0 1 2 3 4 5 6 7

= cooperators
= defectors

< 10
FX-Z

0 17 2/7 3/7 47 5/7 6/71 1
propn. cooperators in population p¢
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=== unstable
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Cooperation cannot invade a threshold game with random group
formation

e Also true for sigmoid games in general (Pefia et al., 2014)

But can arise through historical homophily

w— Stable === unstable

I

o
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o 14
FS o
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4

proportion of Cooperators p

=4
o

v _=B
A
/2’
t
aA

ho hy
homophily h




e Cooperation cannot invade a threshold game with random group
formation

e Also true for sigmoid games in general (Pefia et al., 2014)

e But can arise through historical homophily

w— Stable === unstable

w— stable —-=- unstable
P

I
o
)

o
®

-
o
®

proportion of Cooperators p
proportion of Cooperators p

B

v B
4
0.6 C 0.6 1
‘ / : : o[f t
041D ST 0.4 ‘\\
0.2 ;;;\*\\\ 0.2 { . PJ . .
oo [N o’ oo LE gt
0 ho hy 1 0 h hy ho
homophily h homophily h

e For cooperation to persist, either:

e Parameters such that it can be sustained in a well-mixed population

e Some degree of homophily maintained
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Many discrete strategies

e So far, 2 strategies; natural extension, m strategies

e Discrete strategies:
e | could have modelled cooperate and defect as degree of cooperation

— one continuous strategy
e However, some strategies are naturally discrete

e e.g., conditioning on the actions of others
e Shared intentionality (Genty et al., 2020; Tomasello, 2020):

e form a collective ‘we’ with a jointly optimised goal
e make a joint commitment (!?) to the goal
e coordinate our actions towards achieving it

28



Commitment

e Commitment is a norm: one should do what one promised

e Commitment distinguishes us from
other apes
e Experimental situations where one
individual receives their reward early
e 3.5-year-old children continue
contributing until their partner also
gets their reward (Hamann et al., 2012)

e chimpanzees don't distinguish
between continuing to help in an

Collaborative Condition

existing collaboration versus starting
a new one (Greenberg et al., 2010)

29



Commitment and coordination

e In the threshold game, hunters are a

bit stupid
e Cooperator will run off to do the 7 Ead
B | mehy kdy
hunt by themselves S +* #
o
e But people don't really behave this 3 A~ ¢ J“
: 3 5.
way; they coordinate B B Y
e |f we were in this situation, we'd : 2 FY
have a conversation £ T w
e That's also how people behave %
experimentally & rZ
E - X

e e.g., Van de Kragt et al. (1983, e 33484998
Am Pol Sci Rev) number of cooperators
e Plus, coordination improves the

evolutionary prospects for cooperation!

30



Coordination

e Newton (2017 Games Econ Behav)
‘shared intentionality’ evolves under
fairly general conditions in a public
goods game

Jonathan Newton
Kyoto Uni

31



Coordination in a threshold-game example

e Extend the threshold game:

e Coordinating cooperators draw straws to decide who will contribute
e The ability to coordinate entails a small cognitive cost &

old threshold game coordinated cooperation game
nbr. cooperators among n — 1 others nbr. cooperators among n — 1 others
5 6 7 0 1 2 3 4 5 6 7
== CcOOperators = cOOperators
£ = defectors rw £ = defectors rw
o o
g z
2 Lz e Lz
Fw-z /\ w-z
8 ]
N 1, K
— " XZ —— T XZ
0 1/7 2/7 3/7 47 5/7 6/7 1 0 1/7 2/7 3/7 47 5/7 6/7 1
propn. cooperators in population pc propn. cooperators in population pc
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Coordination in a threshold game example

old threshold game coordinated cooperation game
nbr. cooperators among n — 1 others nbr. cooperators among n — 1 others
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
m— COOperators m— COOperators
£ = defectors rw £ = defectors rw
o 1)
g 7
2 Lz = Lz
Fw-z /\ w-Z
8 g
— " XZ —— T XZ
0 1/7 2/7 3/7 4/7 5/7 6/7 1 0 17 2/7 3/7 4/7 5/7 67 1
propn. cooperators in population pc propn. cooperators in population pc

e Sustains cooperation where it could not otherwise be sustained

e Can't invade, but we already know we can overcome this with
homophily

33



Coordination improves the prospects for coordination

Coordination improves the prospects for
coordination

e Newton: Coordination can even sustain nbr. caoperators among n ~ 1 others
. . . Y
cooperation in a linear game! o | w
£ f 7
e ... wait & 2
x
e |t never makes sense to contribute in the Y —
linear game 3 ﬁ ,
e |t's true the Defectors can't invade, but what ~ xz
0 /7 2/7 3/7 47 5/7 6/7 1
about a type who participates in the lottery Propn- cooperators in population pe

but doesn't follow through?

Need to include another new strategy: Liars

34



e Subscripts: 0 = focal player; nf = nonfocal players; a = all players

e G random variable for strategy composition, takes values g

j=4 j=5
e Players: g, = (0,1,0,0), g, = (1,0,0,0), g, = (0,0,0,1),. ..

e Whole-group: g, = (3,2,0, 1)
e Nonfocal: g, =(3,1,0,1)
e g; = e, player j plays strategy s, (a 1 in the x-th position)

35



Many strategies

How does a trait change frequency over time?

George Robert Price

dynamics of propn. of sy

!
ApX = COV[ G07X 5 W() ],

focal's strategy indicatorT Tfitness of focal

1 if focal strategy s,,
GO,X = i
0 otherwise.
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dynamics of propn. of sy

J
Ap, = Cov[ Gox , Wo ],

1 if focal plays syx; 0 otherwiseT Tfitness of focal
selection strength focal payoff random variable
vacancies *L l

— 14§ Mo
Wo=s +(1—-5) =
survival probabilityT T 1+

Tavg. payoff in population

Useful identity: Cov[X,aY + b] = a Cov[X, Y]
Substituting and rearranging:

strategy indicator focal payoff

1o
Apyx x Cov { Gox , l‘lo}
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Other member accounting

focal's strategy indicator focal payoff

1o
Apy x Cov { Gox , I'Io}

Payoff to the focal individual:

1 if focal plays s;; 0 otherwise payoff to s;-player

l i
I_IO—Z GOI e,, nf)

Tnonfocal strategy composition

Useful identity: Cov[X, Y] =E[XY] —E[X] E[Y]

Ap, =E | Gox m(ex, Gt }*PXZE[GOI (e, an)}

nonfocal strategy composntlonT T
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Other member accounting

nonfocal strategy composition
! m !
Ap, =E [GO,X Tl'(ex, Gt )} — Px ZE [GO,,' 7'('(6,‘, Gt )}
i=1

Let Gy¢ be the set of all strat. compositions g ;. Then expectations:

E[Goim(ei, Gu)l = D m(ei,8ar) PlGo = €i, Gur = £,]

gnfegnf
= Y m(ei,8ur) PlGo = €] P[Gui =g, | Go =ei]
8nrE€Ynt o
= Pi Z Tr(e/’gnf) IED[an = gnf | GO = ei]
8nfE€Ynt

i

Recovered replicator eqn: Apy o py (ﬁx -3 p,-ﬁ,-) =px(Tx — 7).
But P[Gnt = g,¢ | Go = ej] is not obvious:
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up accounting

Idea: draw a group at random, then draw a focal individual.

strategy indicator focal payoff

Ap, o Cov [ Gi,x : rfo }

This time, focus on the whole-group distribution.

new payoff fnc wrt whole-group strategy composition
I_IO - Z G0 i el7 a)

Using a similar method to before involving covariance identities and
re-arranging, we obtain

m
Apx = Z gquXA(exaga Z

8.€0a

elaga) ]P)[Ga :ga]

prob. of whole—group strategy compositionI -




Prob. of whole-group strategy composition, P[G, = g,| =7

colours = strategies; vertical lines divide families

PG, - [0000 0 0]
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Prob. of whole-group strategy composition, P[G, = g,| =7

colours = strategies; vertical lines divide families

PG, - [0000 0 0]
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Prob. of whole-group strategy composition, P[G, = g,| =7

colours = strategies; vertical lines divide families

PG.=[00000 0] @ 0o 0
o]
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Prob. of whole-group strategy composition, P[G, = g,| =7

colours = strategies; vertical lines divide families

l
o
g
N
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Prob. of whole-group strategy composition, P[G, = g,| =7

colours = strategies; vertical lines divide families

[@e e oo

PG, ~@0®500)]  [eeesse

s . s SO0
2. eeoin [

0000

Sooaao)

P(Z - @eelo ole)

_ FE T P eeE e | T )

Fy C(z)-A(z,p)
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Probability of whol

Probability of strategywise family-size distribution:

get from homophilic group-formation model

|
PlG.=g]= ) F C(2) Alzp)
z2E2g, Tprob. families’ strategies
count of multiset permutations

!
A(Z, P) _ H p/”ziH

i=1

nbr. families pursuing strategy s;

Analogous to the power terms in 2-strategy game, e.g.,

p2 = 0251 p1 + 0232 Pi

42



Bringing it all together:

prob. focal pursues s, over strategywise family-sizes

l |
I ( Eox lev.8a) — Px Z Bl (e, ga)> D> C(2) Az, P) Frum(z)

n
8aE€0a 2E€Zg,

Tsum over group strategy compositions

e Not as intuitive as the traditional replicator equation
o Ap, x py(Tx — )
e Might be useful from computational perspective because we've split

homophily calculations off from strategy identity

e Now it's clearer how to calculate P[Gns = g,¢ | Go = €/]
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Aside: Payoff-matrix transformation example (2 players)

e Idea: transform payoffs so they take into account homophily
Well-mixed game: p; = pi(7; — 7) = pi(( A p)i — p" A p), where
aij = m(ei, €;),

nonfocal’s strategy
_nonfocal’s strategy

aii 000 a,m P1 aiipr+ ...+ ar,mPm

focal'’s strat.

Tm am,1 e am,m Pm am,1P1+ ...+ am,mPm

e Now with homophily, dyadic relatedness 6,_.1
a1 e al,m a1 e ai,l
B =(1—6)| : Do+ 6
ama1 .- @mm amm ... Amm
i matched with random with prob. 1 — 6p_, 1 i matched with i with prob. 65_, 1

e Dynamics of A with homophily = dynamics of B well-mixed

pi=pi((Bp)i—p" Bp)
44



Aside: Payoff transformation n players

Seeking a solution to:

player 2
o [bm,l,l bm,1,2 bm,l,m
,é\ \ Do 0 1 Do 0 o 2,m
B = > [
[ ba11 b2 b2.1,m —
b{) 91 br) 99 s aa b() 7771 ’
bi11 b2 b1,1,m
L]
- bio1  bi2o bi,2,m
[«D)
- o
] :
bl,m,l bl,m,2 bl,m,m

45



Payoff transformation n players

_ qo0
bo=2 Fa | 2 7| 2
qkn I qQeEq ’ J€JTay.q

get from group-formation model

Code to calculate it on Github:

1. Numerically: TransmatBase class functions/transmat_base.py.

2. Symbolically: functions/symbolic_transformed.py.
But why would you want to do this?

e B is expensive to calculate, but matrix multiplication is optimised,
can be worth the trade-off when finding steady states

e Use maths from well-mixed case, e.g., Jorge Pena's analysis
techniques (example in appendix)

46


https://github.com/nadiahpk/homophilic-many-strategy-PGG/
https://github.com/nadiahpk/homophilic-many-strategy-PGG/

Coordinated cooperation

e Game with 4 strategies:

1. D: unconditional Defector, never contributes
2. C: Coordinating cooperator, hold lottery, follow through if chosen
e Nbr. contributors 7 = threshold, or inflection point if sigmoid

3. L: Liar, participate in lottery, never contributes

4. U: Unconditional cooperator, always contributes
e C and L pay cognitive cost ¢ regardless of game outcome
e U and C pay contribution cost c if contributing
e Explore the range from linear to threshold game

B=0 B=b/8 B=b/3
1.0 1() (b) (©

o 1 2 30 1 2 3 0 1 2 3
number of contributors

Example 3-player - symbolic analysis
Example 8-player - numerical analysis

47



How to read results

Coordinating

Unconditional Defectors
Cooperators

separatrix

e Evolutionary dynamics for a given homophily level h
e Dynamics inside a triangular pyramid
e The points represent a population with just one strategy, lines 2
strategies, triangles 3
e Blue points are stable in that dimension, red points unstable
48
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Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function
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Results 2: more linear benefits function
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Results summary

(a) more nonlinear (b) more linear
perfect homophily no homophily perfect homophily no homophily
: e — T

I e
invad, ‘ uwD\ ‘
Legend:

[UCuninvadable ] jnvadable
[ uninvadable state
jnvad.
P ——— I | invadable state

Linvadable

1 B wansientstate
C+D+L
] trajectory after invasion
h=015

separatrix
Linvadable

e Results:

1. Coordination allows cooperation where it cannot otherwise persist

2. First arose through kin selection
3. To persist in modern scenario, either:

e Keep some degree of homophily in modern interactions
e Payoff function non-linear enough
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Talk summary

e Mathematical framework combines discrete-strategy group games
with kin selection (or ‘matching rules’)

e Investigate: how cooperation first arose, and how it can persist
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A summary of Richard Joyce's The Evolution of Morality
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