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Public goods game

• Example:

1. Four individuals

2. Project multiples

contributions by 1.2

3. Returns are split equally

$60

$72

$80

$96

x 1.2

$20 $20 $20 $20 $20 $20 $20

$24 $24 $24 $24 $18 $18 $18 $18

$0 $0 $0 $0 $20$0 $0 $0

$24 $24 $24 $24 $18 $38$18 $18

x 1.2

(a) (b)

• Group-game version of Prisoner’s Dilemma

• Max total payoffs if everyone contributes
• But max individual payoff if you don’t contribute

• Marginal per-capita return = 1.2/4 = 0.3 < 1

• i.e., 30c back per $1 contributed

• Never makes sense to contribute
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How do people really behave in linear PGGs?

• Example: Burton-Chellew et al. (2016, PNAS)

• Elicited contributious in PGG

• Played against a computer

• Computer play presumably removed fairness/empathy considerations

• Contribution level depends on

contribution of others

• Similar results in other studies

• People genuinely seem believe

this is payoff maximising!
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Why do people make this mistake?

• Deeply unnatural scenario

• Previous work has focused on two

‘mistakes’:

1. Mistake one-shot game for iterated

game

2. Mistake anonymous game for one

with reputation concerns

My focus: Mistaking a linear game for a nonlinear one
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Linear public goods game

• In a linear game:

• Benefit increases at constant

rate with nbr. cooperators

• No matter how many

cooperators in the group,

always lose by switching C to

D

• n-player generalisation of PD
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Nonlinear public goods game

• Claim: sigmoid-shaped benefit functions particularly relevant to our

early history

• Defectors always get higher

payoffs than Cooperators

• However, if you are in a group

that’s one cooperator short of

the threshold, you should

cooperate

• In general:

• if cooperators rare, don’t

cooperate

• if cooperators common,

might get higher payoffs if

you’re a cooperator
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Nonlinear public goods game

• Claim: sigmoid-shaped benefit functions particularly relevant to our

early history

• Defectors always get higher

payoffs than Cooperators

• However, if you are in a group

that’s one cooperator short of

the threshold, you should

cooperate

• In general:

• if cooperators rare, don’t

cooperate

• if cooperators common,

might get higher payoffs if

you’re a cooperator
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Nonlinear public goods game: evolutionary perspective

• In general:

• if cooperators rare, don’t cooperate

• if cooperators common, might get

higher payoffs if you also cooperate

• Evolutionary perspective:

• if cooperators rare (invasion),

cooperation can’t succeed

• if cooperators common, cooperation

might persist
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Embed the game in evolutionary dynamics

Replicator dynamics approach:

• Strategies (cooperate, defect) genetically encoded

• Clonal reproduction in an infinite population

• Higher payoff in the game → higher reproductive success
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Replicator dynamics

Change in proportion of x-strategists:

ṗx = px

 π̄x −
m∑
i=1

pi π̄i


expected payoff to x-strategists

proportion of x-strategists

expected payoff in population

m is nbr. strategies

• growth rate proportional to how much better x-strategists’ payoffs

are compared to average
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Replicator dynamics well-mixed

ṗx = px

(
π̄x −

m∑
i=1

pi π̄i

)expected payoff to x-strategists

• ex : indicator, focal plays strategy x (below: 1 when cooperator)

• gnf: non-focal strategy distribution (below: nbr. cooperators among

nonfocals)

For prehistoric-hunt game:

π̄C =
n−1∑
gnf=0

π(eC , gnf) P[Gnf = gnf] ,

=
n−1∑
gnf=0

π(eC , gnf)

(
n − 1

gnf

)
pgnf

C (1− pC )
n−1−gnf

payoff probability gnf non-focals are cooperators

binomial
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Two main results about nonlinear games 5

Recommend: Peña et al. (2014, J Theor Biol)

Two main known results:

1. Cooperation can be sustained

• Do people ‘mistake’ linear

games for a nonlinear ones?

2. But cooperation cannot invade

• Imagine a small nbr. of

cooperators invading

defectors...
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But what if, instead of randomly formed groups, groups tend to form

with family members? Then invading Cooperators more likely to be

grouped with other Cooperators.
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Claim: Genetic homophily was higher in the past
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Replicator dynamics with homophilic group formation

ṗx = px

 π̄x −
m∑
i=1

pi π̄i


expected payoff to x-strategists

proportion of x-strategists

expected payoff in population

but now expected payoff:

π̄C =
n−1∑
gnf=0

π(eC , gnf) P[Gnf = gnf | G0 = eC ]

nonfocal strategy distribution depends on focal’s strategy

no longer binomial

Colours are strategies, boxes are families: • • • •
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Some notation (Hisashi’s previous work)

Let ρℓ be the probability that ℓ players sampled without replacement

from the group have strategy 1.

ρℓ =
ℓ∑

m=1

θℓ→m p1
m

prob. ℓ sampled have m common ancestors

propn. strategy-1 in populatn

Examples:

• Sample 1 individual: ρ1 = p1

• Sample 2 individuals:

ρ2 = θ2→1 p1 + θ2→2 p21

prob. same ancestor prob. strategy-1

prob. two ancestors prob. both strategy-1
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Hisashi’s equation

Ohtsuki (2014, Phil Trans R Soc):

ṗ1 =
n−1∑
gnf=0

n−1∑
ℓ=gnf

(−1)ℓ−gnf

(
ℓ

gnf

)(
n − 1

ℓ

)

[
(1− ρ1 ) ρℓ+1 π(e1, gnf) − ρ1 ( ρℓ − ρℓ+1 π(e2, gnf) )

]relatedness terms

payoff terms
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Linear PGG is a function of dyadic relatedness only

• If the PGG is linear, only need dyadic relatedness

ṗ1 = f ( θ2→1 )

dyadic relatedness, Hamilton’s r

because:

• Payoff function in n-player linear game can be written as a sum of

payoffs in 2-player games

π(n)(ex , g
(n)
nf ) ≡

∑
g
(2)
nf

π(2)(ex , g
(2)
nf )

payoff in n-player game payoff in 2-player game

• So n-player linear game = sum of 2-player games

• So only dyadic relatedness is needed to calculate expected payoff

• But if the payoff function is nonlinear, higher-order relatedness

coefficients are needed (e.g., θ3→1, θ3→2, θ4→1, etc.)
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How do we calculate the higher-order relatedness terms? 10

From group family-size distribution. For example:

partition θ2→1 explanation

F[4] • • • • 1 Any 2 will have a common ancestor.

F[3,1] • • • • 3
4
× 2

3
= 1

2
Both must be blue (family size 3).

F[2,2] • • • • 1× 1
3
= 1

3
Choose any, then its 1 family member.

F[2,1,1] • • • • 2
4
× 1

3
= 1

6
Only possible in the partition of 2.

F[1,1,1,1] • • • • 0 Not possible.

So if we can calculate the Fq , we can calculate the needed θl→m
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Homophilic group-formation models

Kristensen et al. (2022); Martin & Lessard

(a) Leader driven:

• The leader is chosen at random from

the population.

• Leader recruits/attracts kin with

probability h and nonkin with

probability 1− h.

• Group family size distribution

F[ℓ,1,...,1] =

(
n − 1

ℓ− 1

)
hℓ−1(1− h)n−ℓ.

h =: genetic homophily

Leader driven

Members recruit Members attract

(b) (c)

(a)
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Homophilic group-formation models

(b) Members recruit:

• All group members have an equal

chance to recruit the next member.

• Equation in Kristensen et al. (2022)

(c) Members attract:

• Outsiders attracted to kin

• But also attracted to the group as a

whole

• Use Ewens’ formula (Ewen 1972).

h =: genetic homophily

Leader driven

Members recruit Members attract

(b) (c)

(a)

NOTE: can be interpreted in terms of ‘matching rules’, i.e., strategy homophily sensu Jensen &

Rigos (2018, Int J Game Theory)
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Results

Recall no-homophily result: cooperation can (sometimes) persist but it

can never invade:
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We want to go backwards in time — increase homophily — and see if

cooperation can invade.
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Results
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Results
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Results

• Cooperation cannot invade a threshold game

• Also true for sigmoid games in general (Peña et al., 2014)

• Can arise through historical homophily
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• For cooperation to persist, either:

• Parameters such that it can be sustained in a well-mixed population

• Some degree of homophily maintained
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Many discrete strategies

• So far, 2 strategies; natural extension, m strategies

• Discrete strategies:

• I could have modelled cooperate and defect as degree of cooperation

— one continuous strategy
• However, some strategies are naturally discrete

• e.g., conditioning on the actions of others

• Shared intentionality (Genty et al., 2020; Tomasello, 2020):

• form a collective ‘we’ with a jointly optimised goal

• make a joint commitment (!?) to the goal

• coordinate our actions towards achieving it

24



Commitment

• Commitment is a norm: one should do what one promised

• Kerr and Kaufman-Gilliland (1994, J Pers Soc Psychol)

• Commitment distinguishes us from other apes

• In a experimental situation where one individual receives their reward

early, 3.5-year-old children will continue contributing until their

partner also receives their reward (Hamann et al., 2012), whereas

chimpanzees don’t distinguish between continuing to help in an

existing collaboration versus starting a new one (Greenberg et al.,

2010).

Hamann and Warneken (2012, Child Dev)
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Commitment and coordination

• In the threshold game, hunters are a

bit stupid

• Cooperator will run off to do the

hunt by themselves

• But people don’t really behave this

way – they coordinate

• If we were in this situation, we’d

have a conversation

• And that’s also how people behave

experimentally (e.g., Van de Kragt et

al. 1983, Am Pol Sci Rev)

• Plus, coordination improves the

evolutionary prospects for cooperation!
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Coordination 15

• Newton (2017 Games Econ Behav)

‘shared intentionality’ evolves under

fairly general conditions in a public

goods game

Jonathan Newton
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Coordination in a threshold game example

• Extend the threshold game:

• Coordinating cooperators draw straws to decide who will contribute

• The ability to coordinate entails a small cognitive cost ε
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Coordination in a threshold game example

old threshold game

X
Z

W
Y

pa
yo

ffs

cooperators
defectors

0 1/7 2/7 3/7 4/7 5/7 6/7 1
propn. cooperators in population pC

X-Z

0

W-Z

p C

0 1 2 3 4 5 6 7
nbr. cooperators among n 1 others

coordinated cooperation game

X

Z

W

Y

pa
yo

ffs

cooperators
defectors

0 1/7 2/7 3/7 4/7 5/7 6/7 1
propn. cooperators in population pC

X-Z

0

W-Z

p C

0 1 2 3 4 5 6 7
nbr. cooperators among n 1 others

• Sustains cooperation where it could not otherwise be sustained

• Can’t invade, but we already know we can overcome this with

homophily
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Even in a linear game?

• Coordination can even sustain cooperation in

a linear game! ... wait

• It never makes sense to contribute in the

linear game

• It’s true the Defectors can’t invade, but what

about a type who participates in the lottery

but doesn’t follow through?

• New strategy: Liars
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New notation

• G random variable for strategy composition, takes values g

• Subscripts: 0 = focal player; nf = nonfocal players; a = all players

j = 0

s2

j = 1

s1

j = 2

s4

j = 3

s2

j = 4

s1

j = 5

s1

• Players: g 0 = (0, 1, 0, 0), g 1 = (1, 0, 0, 0), g 2 = (0, 0, 0, 1), . . .

• Whole-group: ga = (3, 2, 0, 1)

• Nonfocal: gnf = (3, 1, 0, 1)

• g j = ex : player j plays strategy sx (a 1 in the x-th position)
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Many strategies

How does a trait change frequency over time?

∆px = Cov[ G0,x , W0 ],

dynamics of propn. of sx

focal’s strategy indicator fitness of focal

G0,x =

{
1 if focal strategy sx ,

0 otherwise. George Robert Price

(... some useful covariance identities ...)

∆px ∝ Cov
[
G0,x , Π0

]strategy indicator focal payoff
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Other member accounting

∆px ∝ Cov
[
G0,x , Π0

]focal’s strategy indicator focal payoff

Payoff to the focal individual:

Π0 =
m∑
i=1

G0,i π (e i , Gnf )

1 if focal plays si ; 0 otherwise payoff to si -player

nonfocal strategy composition

Useful identity: Cov[X ,Y ] = E[XY ]− E[X ] E[Y ]

∆px = E
[
G0,x π(ex , Gnf )

]
− px

m∑
i=1

E
[
G0,i π(e i , Gnf )

]
nonfocal strategy composition
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Other member accounting

∆px = E
[
G0,x π(ex , Gnf )

]
− px

m∑
i=1

E
[
G0,i π(e i , Gnf )

]nonfocal strategy composition

Let Gnf be the set of all strat. compositions gnf. Then expectations:

E [G0,iπ(e i ,Gnf)] =
∑

gnf∈Gnf

π(e i , gnf) P[G 0 = e i ,Gnf = gnf]

=
∑

gnf∈Gnf

π(e i , gnf) P[G 0 = e i ]︸ ︷︷ ︸
pi

P[Gnf = gnf | G 0 = e i ]

= pi
∑

gnf∈Gnf

π(e i , gnf) P[Gnf = gnf | G 0 = e i ]︸ ︷︷ ︸
πi

Recovered replicator eqn: ∆px ∝ px
(
πx −

∑m
i=1 piπi

)
= px (πx − π) .

But P[Gnf = gnf | G 0 = e i ] is not obvious: • • • •
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Whole-group accounting

Idea: draw a group at random, then draw a focal individual.

∆px ∝ Cov
[
G0,x , Π0

]strategy indicator focal payoff

This time, focus on the whole-group distribution.

Π0 =
m∑
i=1

G0,i π̂(e i ,Ga)

new payoff fnc wrt whole-group strategy composition

Using a similar method to before involving covariance identities and

re-arranging, we obtain

∆px =
∑

ga∈Ga

(
ga,x
n

π̂(ex , ga)− px

m∑
i=1

ga,i
n

π̂(e i , ga)

)
P[Ga = ga]

prob. of whole-group strategy composition
35



Prob. of whole-group strategy composition, P[Ga = ga] =?
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Prob. of whole-group strategy composition, P[Ga = ga] =?
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Prob. of whole-group strategy composition, P[Ga = ga] =?
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Prob. of whole-group strategy composition, P[Ga = ga] =?
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Prob. of whole-group strategy composition, P[Ga = ga] =?
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Probability of whole-group strategy composition 18

Probability of strategywise family-size distribution:

P[Ga = ga] =
∑

z∈Zga

Fy C (z) A(z ,p)

get from homophilic group-formation model

count of multiset permutations
prob. families’ strategies

A(z ,p) =
m∏
i=1

p
∥z i∥
i

nbr. families pursuing strategy si

Analogous to the power terms in 2-strategy game, e.g.,

ρ2 = θ2→1 p1 + θ2→2 p
2
1
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Whole-group accounting

Bringing it all together:

∆px ∝
∑

ga∈Ga

(
ga,x

n
π̂(ex , ga)− px

m∑
i=1

ga,i

n
π̂(e i , ga)

) ∑
z∈Zga

C(z) A(z, p) Fsum(z)


sum over group strategy compositions

prob. focal pursues sx over strategywise family-sizes

• Not as intuitive as the traditional replicator equation

• ∆px ∝ px (πx − π)

• Might be useful from computational perspective because we’ve split

homophily calculations off from strategy identity

• Now it’s clearer how to calculate P[Gnf = gnf | G 0 = e i ]
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Aside: Payoff-matrix transformation example (2 players)

• Idea: transform payoffs so they take into account homophily

• Well-mixed game: ṗi = pi (πi − π) = pi (( A p)i − pT A p), where
ai,j = π(e i , e j),

π =


π1

.

.

.

πm

 =
fo
ca
l’
s
st
ra
t.

←
−−
−−
−−

nonfocal’s strategy−−−−−−−−−→
a1,1 . . . a1,m
.
.
.

.

.

.

am,1 . . . am,m




p1
.
.
.

pm

 =


a1,1p1 + . . . + a1,mpm

.

.

.

am,1p1 + . . . + am,mpm



• Now with homophily, dyadic relatedness θ2→1

B = θ2→1


a1,1 . . . a1,1
.
.
.

.

.

.

am,m . . . am,m


︸ ︷︷ ︸

i matched with i with prob. θ2→1

+ (1− θ2→1)


a1,1 . . . a1,m
.
.
.

.

.

.

am,1 . . . am,m


︸ ︷︷ ︸
i matched with random with prob. 1 − θ2→1

• Dynamics of A with homophily ≡ dynamics of B well-mixed

ṗi = pi (( B p)i − pT B p)
39



Aside: Payoff transformation n players

Seeking a solution to:
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Aside: Payoff transformation n players

bu =
∑
q⊢n

Fq

∑
q0∈q

q0
n|Jq0,q |

 ∑
j∈Jq0,q

au j


get from group-formation model

Code to calculate it on Github:

1. Numerically: TransmatBase class functions/transmat base.py.

2. Symbolically: functions/symbolic transformed.py.

But why would you want to do this?

• B is expensive to calculate, but matrix multiplication is optimised,

can be worth the trade-off when finding steady states

• Use maths from well-mixed case, e.g., Jorge Peña’s analysis

techniques (example in appendix)

41
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Coordinated cooperation

• Game with 4 strategies:

1. D: unconditional Defector, never contributes
2. C : Coordinating cooperator, hold lottery, follow through if chosen

• Nbr. contributors τ = threshold, or inflection point if sigmoid

3. L: Liar, participate in lottery, never contributes

4. U: Unconditional cooperator, always contributes

• C and L pay cognitive cost ε regardless of game outcome

• U and C pay contribution cost c if contributing

• Explore the range from linear to threshold game

0 1 2 3
0.0

0.5

1.0

be
ne

fit

(a)
= 0

0 1 2 3
number of contributors

(b)
= b/8

0 1 2 3

(c)
= b/3

Example 3-player - symbolic analysis

Example 8-player - numerical analysis
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How to read results 22

D C
Cooperators

LU U

U

nconditional Cooperators iars

oordinatingUnconditional efectors

separatrix

• Evolutionary dynamics for a given homophily level h

• Dynamics inside a triangular pyramid

• The points represent a population with just one strategy, lines 2

strategies, triangles 3

• Blue points are stable in that dimension, red points unstable
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Results 1: fairly nonlinear benefits function

h = 1
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U
44



Results 1: fairly nonlinear benefits function

h = 0.645
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Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function

h = 0.26

D C

LU U

U
44



Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function

h = 0.19
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Results 1: fairly nonlinear benefits function
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Results 1: fairly nonlinear benefits function

h = 0.11
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Results 1: fairly nonlinear benefits function

h = 0.106
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Results 1: fairly nonlinear benefits function

h = 0.1031
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Results 1: fairly nonlinear benefits function

h = 0.1026
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Results 1: fairly nonlinear benefits function

h = 0.08
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Results 1: fairly nonlinear benefits function

h = 0
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Results 2: more linear benefits function

h = 0.18
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Results 2: more linear benefits function

h = 0.12
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Results 2: more linear benefits function

h = 0.08
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Results 2: more linear benefits function

h = 0

D C
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U
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Summary

• Mathematical framework combines discrete-strategy group games

with kin selection (or ‘matching rules’)

• Investigate how cooperation first arose and how it can persist

github.com/nadiahpk nadiah.org
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