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 a b s t r a c t

Humans often cooperate in groups with friends and family members with varying degrees of genetic relatedness. 
Past kin selection can also be relevant to interactions between strangers, explaining how the cooperation first 
arose in the ancestral population. However, modelling the effects of relatedness is difficult when the benefits of 
cooperation scale nonlinearly with the number of cooperators (e.g., economies of scale). Here, we present a di-
rect fitness method for rigorously accounting for kin selection in 𝑛-player interactions with 𝑚 discrete strategies, 
where a genetically homophilic group-formation model is used to calculate the necessary higher-order related-
ness coefficients. Our approach allows us to properly account for non-additive fitness effects between relatives 
(synergy). Analytical expressions for dynamics are obtained, and they can be solved numerically for modestly 
sized groups and numbers of strategies. We illustrate with an example where group members can verbally agree 
(cheap talk) to contribute to a public good with a sigmoidal benefit function, and we find that such coordinated 
cooperation is favoured by kin selection. As interactions switched from family to strangers, in order for coordi-
nated cooperation to persist and for the population to resist invasion by liars, either some level of homophily must 
be maintained or following through on the agreement must be in the self-interests of contributors. Our approach 
is useful for scenarios where fitness effects are non-additive and the strategies are best modelled in a discrete 
way, such as behaviours that require a cognitive ‘leap’ of insight into the situation (e.g., shared intentionality, 
punishment).

1.  Introduction

The theory of kin selection (Hamilton, 1964; Taylor and Frank, 
1996; Lehmann and Rousset, 2010) not only explains cooperation be-
tween family members (Burnstein, 2015) but can also provide hypothe-
ses for the origin of cooperation between nonkin. Cooperation between 
nonkin and strangers (Ledyard, 1995; Raihani and Bshary, 2015) may 
have originated when human ancestors interacted in small groups of 
mostly kin, thus evolving cooperative psychological impulses that were 
subsequently misapplied to nonkin today, i.e., the maladaptation hy-
pothesis (Burnham and Johnson, 2005; Hagen and Hammerstein, 2006; 
El Mouden et al., 2012). Alternatively, a past kin-assortative environ-
ment may have facilitated the invasion of a cooperative behaviour that, 
once established in a population, is adaptive in interactions with co-
operative nonkin (e.g., Bach et al., 2006; Boyd et al., 2010; Takezawa 
and Price, 2010; Cornforth et al., 2012; Boyd et al., 2014; Schonmann 
and Boyd, 2016; Kristensen et al., 2022). For example, reciprocal strate-
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gies like tit-for-tat in the iterated Prisoner’s Dilemma are mutually ben-
eficial among strangers, but in finitely repeated games in very large 
populations, they cannot invade a population of defectors (Axelrod and 
Hamilton, 1981); one possibility is that they first arose in the past, when 
dispersal was low and individuals typically interacted with family, and 
their invasion was facilitated by kin selection (Axelrod and Hamilton, 
1981; Carter, 2021; Kristensen et al., 2022). Given the multiple ways kin 
selection likely influenced the evolution of human cooperation, we are 
interested in modelling techniques that combine kin assortativity with 
evolutionary game theory.

One way kin selection can operate is if individuals have a preference 
to interact with family members, and anthropological evidence suggests 
this is common (Alvard, 2009; Jaeggi and Gurven, 2013). For example, 
reciprocal food sharing networks provide a buffer against uncertainty, 
but individuals often choose reciprocal partners from among their 
kin (Allen-Arave et al., 2008; Nolin, 2010; Koster and Leckie, 2014). 
As another example, collective livestock-herding provides mutual
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benefits through economies of scale (Næss et al., 2010), and members 
of nomadic herding groups are typically—though not always—relatives 
(Næss, 2021). Such groups may form temporarily, e.g., changing com-
position between seasons (Næss, 2019). Therefore, we want to model 
ephemeral groups (sensu Godfrey-Smith and Kerr, 2009) that contain a 
mix of kin and nonkin.

However, it can be difficult to model kin selection when cooperation 
has non-additive benefits, i.e., when the benefit from many cooperators 
working together differs from the sum of the benefits that would have 
accrued if they had worked individually. Non-additivity is ubiquitous 
in biology (Archetti and Scheuring, 2012; Vásárhelyi and Scheuring, 
2013; Archetti et al., 2020), including the evolutionarily important task 
of acquiring resources; confrontational scavenging (Bickerton and Sza-
thmáry, 2011), hunting (Alvard and Nolin, 2002; Boza and Számadó, 
2010), and agricultural food preparation (Hames and McCabe, 2007) 
all involve economies of scale. Non-additivity is also important for con-
temporary cooperation problems; conservation areas can possess ecolog-
ical tipping points (Nobre and De Simone, 2009), and coordination in 
international climate agreements can induce nonlinearities in the ben-
efits returned (Barrett, 2016). Moreover, models must account for non-
additivity because it can significantly alter the evolutionary dynamics of 
a system (Hauert et al., 2006), e.g., it can permit a stable coexistence be-
tween cooperative and non-cooperative types where coexistence would 
not otherwise be possible (Archetti and Scheuring, 2011).

If more than two individuals are involved in a non-additive inter-
action, a model must account for all possible combinations of types 
within the group (e.g., Eq. (6), Allen and Nowak, 2016), which means 
accounting for the probability of all kin+nonkin combinations, i.e., 
the higher-order genetic associations (Ohtsuki, 2010) or other collec-
tive relatedness measures (Allen et al., 2024). One can avoid compli-
cated genetic accounting with the help of certain assumptions (Van Vee-
len, 2009; Van Cleve, 2015) when modelling continuous traits, e.g., the 
amount contributed to a public good (Coder Gylling and Brännström, 
2018) or the probability of cooperating (Peña et al., 2015). However, 
many human cooperative strategies involve a conceptual ‘leap’—such 
as inventing a punishment institution (Sigmund et al., 2010), or condi-
tioning one’s cooperation on the presence of such an institution (Garcia 
and De Monte, 2013) or the cooperation of others (Takezawa and Price, 
2010)—that is better modelled in a discrete way.

Here, we detail an evolutionary game-theoretic approach that can 
be applied to discrete strategies in non-additive group games played be-
tween relatives. Our approach builds on the higher-order genetic asso-
ciation approach of Ohtsuki (2014), which we here extend to scenarios 
with more than two strategies. We present our formulae in three ways. 
The first form is comparable to simple replicator dynamics (where group 
members are chosen at random), and we find that, when the group size 
and number of strategies is small, we can partition the dynamics into 
a kin-interaction and random-interaction component. The second form 
transforms the homophilic scenario into an equivalent well-mixed sce-
nario, which can be analysed using the same methods as replicator dy-
namics. The third form is less analytically interpretable but more effi-
cient for computation. We provide code and illustrate use of the code in 
a worked example.

We apply our methods to the example of coordinated cooperation 
in a public goods game with a sigmoidal benefit function. We find that 
coordinated cooperation can be favoured by kin selection, which allows 
it to invade, and it may subsequently persist if homophily declines and 
interactions shift from family to strangers. Thus, kin selection provides a 
stepping-stone towards coordinated cooperation between nonkin. How-
ever, if the benefits function is not nonlinear enough, then the popula-
tion may be vulnerable to invasion by a ‘lying’ strategy that presents as 
a coordinating cooperator but subsequently defects. In that case, some 
level of homophily must be maintained in order for coordinated cooper-
ation to persist evolutionarily. Our approach can be used for any similar 
example with a matrix-payoff game and kin selection to explore differ-
ent narratives about the origin and persistence of cooperation.

2.  Model

The higher-order genetic associations approach extends the replica-
tor dynamics approach (Hofbauer and Sigmund, 1998) to include kin 
selection. Kin selection is modelled by accounting for the relatedness 
between group members due to genetically homophilic group forma-
tion.

2.1.  Notation

Throughout the paper, we will use round braces for vectors, curly 
braces for sets, and square braces for multisets. Multisets are sets that al-
low the same element to appear more than once. For example, (3, 2, 1, 1)
is a four-dimensional vector, {3, 2, 1} is a set with three elements, 3, 
2 and 1, and [3, 2, 1, 1] is a multiset that includes 3 once, 2 once, and 1
twice. Most importantly, (3, 2, 1, 1) and (1, 1, 2, 3) are different as vectors, 
but [3, 2, 1, 1] and [1, 1, 2, 3] are the same as multisets. Symbols that are 
frequently used are summarised in Table 1.

2.2.  Life-cycle assumptions

We assume an infinitely large, clonally reproducing population of 
haploid individuals. Each individual plays one of 𝑚 genetically deter-
mined pure strategies, 𝑠1,… , 𝑠𝑚 (e.g., Cooperate, Defect, etc.) in a social 
interaction or ‘game’ (e.g., a public goods game). Every timestep, indi-
viduals play games in groups of size 𝑛, which are formed independently 
according to a group-formation model (examples detailed below). Each 
individual is on average involved in one game per timestep. The payoffs 
each individual receives from the games determine the number of clonal 
offspring it has. A proportion 𝑠 of adults survive each timestep, and off-
spring compete on an equal basis for the vacancies created by adult 
deaths. Because groups form and dissolve for each interaction, offspring 
compete in a global pool, and there is no local, within-group competi-
tion. This means that we have kin interaction but no kin competition in 
our model.

2.3.  Homophilic group-formation model

Under genetic homophily, individuals preferentially group with fam-
ily members. In our model, ‘family’ means the members have inherited 
their strategy from a shared common ancestor, i.e., they are identical by 
descent (IBD). Two individuals with different strategies are never fam-
ily. However, two individuals with the same strategy may be family or 
they may not be — the latter case occurs when they have inherited the 
same strategy from different mutational events.

A homophilic group-formation model allows us to calculate the prob-
abilities that groups will form with different family structures. We as-
sume each individual has the same degree of family preference regard-
less of their strategy, and consequently the relatedness distribution in 
a group is independent of the strategy distribution. We assume that 
families are large enough that every individual can potentially form a 
group with 𝑛 family members; however, we also assume that families are 
not so large that the strategy distribution among any set of non-family 
deviates from the frequency in the population (i.e., 𝑛 <  family size ≪
population size(= ∞)). For example, we would not allow a single family 
to take up half the population, because then recruitments of non-family 
members will have a different strategy distribution to the frequency dis-
tribution of strategies in the population.

Let 𝒒 be a multiset of positive integers that sum to 𝑛 (i.e., an integer 
partition of 𝑛) that represents the family partition structure of a group. 
For example, 𝒒 = [2, 2, 1] describes a group of 5 individuals with 2 in-
dividuals from one family, 2 individuals from a second family, and 1 
individual from a third. A homophilic group formation model allows us 
to calculate the probability 𝐹𝒒 that a randomly sampled group has fam-
ily partition structure 𝒒. The family structure can also be described by 
a group’s family-size distribution 𝒚, which is a vector of length 𝑛 whose 
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Table 1 
Notation. “r.v.” stands for random variable.
 Symbol  Attribute  Description
𝑛  number  number of players
𝑚  number  number of strategies
𝒒  multiset  family structure of a group, given as a partition of 𝑛
𝒚  vector  family structure of a group, given as a family size distribution
𝐹𝒒 , (or 𝐹𝒚)  number  probability that the family structure is 𝒒, (or 𝒚)
𝒛 = (𝒛1 ,… , 𝒛𝑚)  vector of vectors  detailed family structure in a group
𝒛𝑖 = (𝑧𝑖,1 ,… , 𝑧𝑖,𝑛)  vector  detailed family structure of 𝑠𝑖 strategists in a group, given as a family size distribution
𝑟2  number  dyadic relatedness
𝑟3  number  triadic relatedness
𝒈0 = (𝑔0,1 ,… , 𝑔0,𝑚)  vector  indicator of strategy of the focal player
𝒈𝑗 = (𝑔𝑗,1 ,… , 𝑔𝑗,𝑚)  vector  indicator of strategy of 𝑗th player
𝒈nf = (𝑔nf,1 ,… , 𝑔nf,𝑚)  vector  indicator of strategies of the nonfocal players in a group
𝒈a = (𝑔a,1 ,… , 𝑔a,𝑚)  vector  indicator of strategies of all players in a group
𝜋0  number  payoff of the focal player
𝜋𝑥  number  average payoff of players pursuing strategy 𝑥
𝜋  number  average payoff in the whole population
𝑤0  number  fitness of the focal player
𝑤  number  average fitness in the whole population (= 1)
𝑝𝑥  number  frequency of players pursuing strategy 𝑥
𝑮0 = (𝐺0,1 ,… , 𝐺0,𝑚)  vector of r.v.  random variable for 𝒈
𝑮𝑗 = (𝐺𝑗,1 ,… , 𝐺𝑗,𝑚)  vector of r.v.  random variable for 𝒈𝑗
𝑮nf = (𝐺nf,1 ,… , 𝐺nf,𝑚)  vector of r.v.  random variable for 𝒈nf
𝑮a = (𝐺a,1 ,… , 𝐺a,𝑚)  vector of r.v.  random variable for 𝒈a
Π0  random variable  random variable for 𝜋0
𝑊0  random variable  random variable for 𝑤0

𝑘th element counts how many families in the group have 𝑘 members. For 
example, if 𝒒 = [2, 2, 1], then 𝒚 = (1, 2, 0, 0, 0) because there is 1 family of 
size one, 2 families of size two, 0 families of size three/four/five. There-
fore, a homophilic group-formation model also calculates the probabil-
ity 𝐹𝒚 that a randomly sampled group has family size distribution 𝒚.

Our approach can be used with any group-formation model that pro-
vides probabilities 𝐹𝒒 for all 𝒒 (or equivalently, 𝐹𝒚 for all 𝒚), and three 
examples are detailed in Kristensen et al. (2022):

1. Leader driven: The leader is chosen at random from the popula-
tion, and recruits/attracts kin with probability ℎ and nonkin with proba-
bility 1 − ℎ. The only possible family partition structures have one family 
containing 𝓁 individuals and 𝑛 − 𝓁 families containing a solitary individ-
ual, represented by the multiset 𝒒 = [𝓁, 1,… , 1]. The reason why mem-
bers who are not IBD with the leader have no other family members in 
the group is because we assume the population is infinitely large but 
families are not large. The nonzero family partition probabilities are 

𝐹[𝓁,1,…,1] =
(

𝑛 − 1
𝓁 − 1

)

ℎ𝓁−1(1 − ℎ)𝑛−𝓁 . (1)

2. Members recruit: The initial member is chosen at random. Current 
group members have an equal chance to recruit the next member, and 
recruit kin with probability ℎ and nonkin with probability 1 − ℎ. An 
algorithm for computing 𝐹𝒒 is provided in Kristensen et al. (2022).

3. Members attract: The initial member is chosen at random. Current 
group members have equal weighting 1 of attracting a new member who 
is kin, but nonkin members are also attracted to the group itself with 
collective weighting 𝛼 ∈ [0,∞). Therefore, the probability that the 𝑗th 
recruit (or 𝑗 + 1th group member) is from a new family is
ℙ[𝑗 is from a new family] = 𝛼

𝛼 + 𝑗
,

or from family 𝑎 having 𝑛𝑎 members already in the group is

ℙ[𝑗 is from family 𝑎] = 𝑛𝑎
𝛼 + 𝑗

.

Then, the family partition probabilities are described by Ewens’ formula 
(Ewens, 1972) 

𝐹𝒚 = 𝑛! 𝛼‖𝒚‖
∏𝑛

𝑘=1 𝑘
𝑦𝑘𝑦𝑘!(𝛼 + 𝑘 − 1)

, (2)

where 𝑦𝑘 is the number of families with 𝑘 members and ‖𝒚‖ =
∑𝑛

𝑘=1 𝑦𝑘
is the number of families in the group.

2.4.  Payoff and fitness

The payoff an individual receives from the game depends on its own 
strategy and the strategies of the other group members. We index the 
individuals in the group 𝑗 = 0,… , 𝑛 − 1, reserving the index 0 to de-
note the focal individual. We define the strategy indicator for an indi-
vidual 𝑗 as 𝒈𝑗 = (𝑔𝑗,1,… , 𝑔𝑗,𝑚) such that 𝑔𝑗,𝑥 = 1 if individual 𝑗 pursues 
strategy 𝑠𝑥 and 𝑔𝑗,𝑥 = 0 otherwise. Thus, if individual 𝑗 pursues strategy 
𝑠𝑥, then 𝒈𝑗 = 𝒆𝑥 where 𝒆𝑥 is an 𝑚-dimensional vector with a 1 in the 
𝑥th position and 0 in all others. The whole-group strategy composition 
is 𝒈a = 𝒈0 + 𝒈1 +…+ 𝒈𝑛−1 (a is for “all”) such that the 𝑖th component 
counts the number of group members who pursue strategy 𝑠𝑖. Similarly, 
the nonfocal strategy composition is 𝒈nf = 𝒈1 +…+ 𝒈𝑛−1 (nf is for “non 
focal”).

We assume that the payoff to the focal individual from the game can 
depend on the strategy of the focal individual and the nonfocal strategy 
composition, but that it is invariant against any permutation of labelling 
of the nonfocal individuals, 𝑗 = 1,… , 𝑛 − 1 (cf. Gokhale and Traulsen, 
2010). Thus, the payoff can be written as

𝜋0 ∶= 𝜋(𝒈0, 𝒈nf) =
𝑚
∑

𝑖=1
𝑔0,𝑖𝜋(𝒆𝑖, 𝒈nf). (3)

The payoff can also be written in terms of the whole-group strategy 
composition as 

𝜋0 ∶= 𝜋̂(𝒈0, 𝒈a) =
𝑚
∑

𝑖=1
𝑔0,𝑖𝜋̂(𝒆𝑖, 𝒈a). (4)

These two definitions lead to the two formulations presented below, the 
accounting based on other-member versus whole-group composition, re-
spectively.

Fitness in our model is defined as the number of offspring an indi-
vidual has in the next generation, including the individual itself if it 
survives. Given the lifecycle assumptions, the expected fitness of the fo-
cal individual is the probability it survives plus the expected number of 
its offspring that are recruited to the population 

𝑤0 = 𝑠 + (1 − 𝑠)
1 + 𝛿𝜋0
1 + 𝛿𝜋

, (5)
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where 𝜋 is the average payoff in the whole population, and the selection 
strength 𝛿 scales how important the social interaction is relative to the 
baseline reproduction with value 1. It is assumed that 𝛿 is small enough 
to ensure 1 + 𝛿𝜋0 > 0 and 1 + 𝛿𝜋 > 0 (i.e., we assume 𝑤-weak selection 
sensu Wild and Traulsen, 2007).

2.5.  Evolutionary dynamics

The change in the proportions of different strategies in the popu-
lation is derived from first principles from the Price equation (Price, 
1970). Let 𝒑 = (𝑝1,… , 𝑝𝑚) be the vector of proportions 𝑝𝑥 of the popu-
lation pursuing strategy 𝑠𝑥. We would like to derive Δ𝑝𝑥, which is the 
change in the proportion of 𝑠𝑥 strategists in the population. For that 
purpose, we define several random variables. In what follows, capital 
letters are often used for random variables, while corresponding small 
letters are often used for their values; see Table 1.

We randomly sample a group from the population, which we call 
the “focal group”, and we denote its strategy composition by 𝑮a =
(𝐺a,1,… , 𝐺a,𝑚), where its 𝑖th component 𝐺a,𝑖 represents the number 
of players pursuing strategy 𝑠𝑖 in the group, which is a random vari-
able. Next, we randomly allocate labelling 𝑗 = 0, 1,… , 𝑛 − 1 to the mem-
bers of the group. The player with label 0 is designated the “focal 
player”. We denote the strategy of the 𝑗th player by 𝑮𝑗 = (𝐺𝑗,1,… , 𝐺𝑗,𝑚), 
where its 𝑖th component 𝐺𝑗,𝑖, which is a random variable, is 1 if this 
player pursues strategy 𝑠𝑖 and 0 otherwise. The strategy composition 
among the 𝑛 − 1 non-focal players is denoted by 𝑮nf and calculated 
as 𝑮nf ≡ 𝑮1 +… ,𝑮𝑛−1. We also denote the payoff and the fitness of 
the focal player by Π0 and 𝑊0, respectively. They are also random
variables.

With these notations, the evolutionary dynamics is given by the Price 
equation (Price, 1970) 

Δ𝑝𝑥 =
ℂov[𝐺0,𝑥,𝑊0]

𝑤
, (6)

where ℂov represents covariance, and 𝑤 is the average fitness in the pop-
ulation, which under the assumption of constant population size takes 
value 𝑤 = 1. By repeatedly applying two covariance identities to Eq. (6) 
(details in SI A.2), we obtain 

Δ𝑝𝑥 =
𝛿(1 − 𝑠)
1 + 𝛿𝜋

ℂov[𝐺0,𝑥,Π0] ∝ ℂov[𝐺0,𝑥,Π0]. (7)

3.  Analytical results

The purpose of this section is two-fold. In Section 3.1, we derive 
evolutionary game dynamics based on other-member-accounting pay-
off function 𝜋 in Eq. (3). We find that we can derive difference equa-
tions or differential equations that are in the form of replicator equa-
tions, but expected payoffs are calculated with various relatedness coef-
ficients. The theory we derive gives us analytical insights into how kin-
interactions affect evolutionary dynamics. In Section 3.2, on the other 
hand, we derive evolutionary game dynamics based on whole-group-
accounting payoff function 𝜋̂ in Eq. (4). The derived final expressions 
are difficult to intuitively understand, but the main purpose is to give 
a computationally tractable formula, which gives us a practical method 
for numerically computing evolutionary dynamics of games with any 
given number of players, 𝑛, and with any given number of strategies, 𝑚. 
In other words, the goal of Section 3.1 is to give an intuitive formula, 
whereas the goal of Section 3.2 is to give a computational method. They 
look very different but they are mathematically equivalent, and we be-
lieve providing both types of formulae will help various types of readers 
with different interests.

3.1.  Accounting based on other-member composition

Substituting the payoff to the focal individual from Eq. (3) into 
Eq. (7), we obtain the dynamics 

Δ𝑝𝑥 ∝ 𝔼[𝐺0,𝑥𝜋(𝒆𝑥,𝑮nf)] − 𝑝𝑥
𝑚
∑

𝑖=1
𝔼[𝐺0,𝑖𝜋(𝒆𝑖,𝑮nf)], (8)

where 𝔼 is expectation (see SI A.3). The random variable 𝑮nf can take 
values from the set 

nf =

{

𝒈nf ∈ ℕ𝑚
≥0

|

|

|

|

|

𝑚
∑

𝑖=1
𝑔nf,𝑖 = 𝑛 − 1

}

, (9)

where ℕ≥0 = {0, 1, 2,…} represents the set of natural numbers. Define 
𝜋𝑖 as the expected payoff to 𝑠𝑖 strategists 
𝜋𝑖 ∶= 𝔼[𝜋(𝒆𝑖,𝑮nf) ∣ 𝑮0 = 𝒆𝑖]

=
∑

𝒈nf∈nf

𝜋(𝒆𝑖, 𝒈nf)ℙ[𝑮nf = 𝒈nf ∣ 𝑮0 = 𝒆𝑖],
(10)

which is the sum over all possible 𝒈nf of the product of the payoff to an 𝑠𝑖
strategist when the others are 𝒈nf and the probability that an 𝑠𝑖 strategist 
is grouped with others that are 𝒈nf. Expanding Eq. (8) and substituting 
in the definition in Eq. (10), it can be shown (details in SI A.3) that the 
change in the proportion of 𝑠𝑥 in the population is proportional to 

Δ𝑝𝑥 ∝ 𝑝𝑥

(

𝜋𝑥 −
𝑚
∑

𝑖=1
𝑝𝑖𝜋𝑖

)

= 𝑝𝑥
(

𝜋𝑥 − 𝜋
)

, (11)

which is a discrete-time replicator equation (Hofbauer and Sigmund, 
1998). By taking a proper limit (for example, letting 𝛿(1 − 𝑠) → 0 and 
taking a proper time scale) in Eq. (7), we can obtain a continuous-time 
replicator equation (Hofbauer and Sigmund, 1998), as 
𝑝̇𝑥 = 𝑝𝑥

(

𝜋𝑥 − 𝜋
)

. (12)

Here and hereafter 𝑝̇𝑥 represents a time-derivative of 𝑝𝑥.
The term ℙ[𝑮nf = 𝒈nf ∣ 𝑮0 = 𝒆𝑖] in Eq. (10) depends on the group-

formation model. In a well-mixed population, where group formation is 
random uniform, we have ℙ[𝑮nf = 𝒈nf ∣ 𝑮0 = 𝒆𝑖] = ℙ[𝑮nf = 𝒈nf], mean-
ing that other-member composition is independent of the focal player, 
and the nonfocal strategy composition is determined by 𝑛 − 1 indepen-
dent samples from the population, which follows a multinomial distribu-
tion. However, if group formation is genetically homophilic, the group 
is biased towards having more individuals pursuing the same strategy.

3.1.1.  Replicator dynamics written in terms of relatedness coefficients
To obtain an intuition for Eq. (11), let us first consider a game with 

𝑚 = 3 strategies played between 𝑛 = 2 players. The probabilities of each 
nonfocal strategy conditional on the focal individual being an 𝑠1 strate-
gist are
ℙ[𝑮nf = 𝒆1 ∣ 𝑮0 = 𝒆1] = 𝐹[2] + 𝐹[1,1]𝑝1,

ℙ[𝑮nf = 𝒆2 ∣ 𝑮0 = 𝒆1] = 𝐹[1,1]𝑝2,

ℙ[𝑮nf = 𝒆3 ∣ 𝑮0 = 𝒆1] = 𝐹[1,1]𝑝3. (13)

Therefore, the expected payoff to 𝑠1-strategists is
𝜋1 = (𝐹[2] + 𝐹[1,1]𝑝1)𝜋(𝒆1, 𝒆1) + (𝐹[1,1]𝑝2)𝜋(𝒆1, 𝒆2)

+ (𝐹[1,1]𝑝3)𝜋(𝒆1, 𝒆3). (14)

The expected payoff to the 𝑠1 strategist 𝜋1 can also be written in terms 
of dyadic relatedness. The probability that both individuals are IBD is 
𝑟2 = 𝐹[2] (i.e., the dyadic relatedness), and therefore we have 1 − 𝑟2 =
𝐹[1,1], resulting in 
𝜋1 = 𝑟2𝜋(𝒆1, 𝒆1) + (1 − 𝑟2)

(

𝑝1𝜋(𝒆1, 𝒆1) + 𝑝2𝜋(𝒆1, 𝒆2) + 𝑝3𝜋(𝒆1, 𝒆3)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝜋mix1

(15)
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where 𝜋mix1  is the average payoff of strategy 𝑠1 in a well-mixed popula-
tion.

In general, for a 2-player game with 𝑚 strategies, we have 

𝜋1 = 𝑟2𝜋(𝒆1, 𝒆1) + (1 − 𝑟2)
𝑚
∑

𝑖=1
𝑝𝑖𝜋(𝒆1, 𝒆𝑖)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝜋mix1

. (16)

At one extreme with perfect homophily, we have 𝑟2 = 1 and therefore 
𝜋1 = 𝜋(𝒆1, 𝒆1). At the other extreme with 𝑟2 = 0, the average payoff is 
𝜋1 = 𝜋mix1 , which recovers the replicator equation for a well-mixed pop-
ulation. Thus, the general effect of genetic homophily on fitness is to 
produce expected payoffs between these two extremes.

Now let us consider games played between 𝑛 = 3 players. The ex-
pected payoff to an 𝑠1 strategist is

𝜋1 = 𝐹[3]𝜋(𝒆1, 2𝒆1) + 𝐹[2,1]

𝑚
∑

𝑖=1
𝑝𝑖
[1
3
𝜋(𝒆1, 2𝒆𝑖) +

2
3
𝜋(𝒆1, 𝒆1 + 𝒆𝑖)

]

+ 𝐹[1,1,1]

𝑚
∑

𝑗=1

𝑚
∑

𝑘=1
𝑝𝑗𝑝𝑘𝜋(𝒆1, 𝒆𝑗 + 𝒆𝑘), (17)

which can be derived as follows. 𝐹[3] is the probability that an 𝑠1 strate-
gist finds itself grouped with two others with whom it is IBD, and there-
fore those others are also 𝑠1 strategists. 𝐹[2,1] is the probability the family 
partition structure is [2, 1]. With probability 1∕3, the focal 𝑠1 strategist 
is a member of the size-1 family, in which case the other two are IBD 
to each other, and they both are 𝑠𝑖 strategists with probability 𝑝𝑖. With 
probability 2∕3, the focal 𝑠1 strategist is a member of the size-2 family, 
in which case one group member is IBD to the focal and is an 𝑠1 strate-
gist, and the other group member is an 𝑠𝑖 strategist with probability 𝑝𝑖. 
𝐹[1,1,1] is the probability that none are IBD, and therefore nonfocal group 
members are random samples from the population.

The expected payoff to the 𝑠1 strategist 𝜋1 can also be written in 
terms of relatedness. The triadic relatedness 𝑟3 is the probability that 
3 individuals drawn from the group will be IBD, which is 𝑟3 = 𝐹[3]. The 
dyadic relatedness 𝑟2 is the probability that 2 individuals drawn from the 
group without replacement will be IBD, which is 𝑟2 = 𝐹[3] + (𝐹[2,1]∕3). 
These give 𝐹[3] = 𝑟3, 𝐹[2,1] = 3(𝑟2 − 𝑟3), and 𝐹[1,1,1] = 1 − 3𝑟2 + 2𝑟3. There-
fore, the expected payoff to an 𝑠1 strategist can be written in terms of 
the triadic and dyadic relatedness as

𝜋1 = 𝑟3𝜋(𝒆1, 2𝒆1) + (𝑟2 − 𝑟3)
𝑚
∑

𝑖=1
𝑝𝑖
[

𝜋(𝒆1, 2𝒆𝑖) + 2𝜋(𝒆1, 𝒆1 + 𝒆𝑖)
]

+ (1 − 3𝑟2 + 2𝑟3)
𝑚
∑

𝑗=1

𝑚
∑

𝑘=1
𝑝𝑗𝑝𝑘𝜋(𝒆1, 𝒆𝑗 + 𝒆𝑘). (18)

Similar to before, if 𝑟2 = 𝑟3 = 0, then 𝜋1 = 𝜋mix1 ; and if 𝑟2 = 𝑟3 = 1, then 
𝜋1 = 𝜋(𝒆1, 2𝒆1).

In general, for games with 𝑛 players, the probability distribution of 
group compositions, and thus the expected payoffs, are written in terms 
of the set of family composition probabilities {𝐹𝒒}, where 𝒒 ranges over 
all possible partitions of integer 𝑛 by positive integers. The “partition 
function” 𝑃𝑛 counts the number of possible partitions of 𝑛. For exam-
ple, the first six are 𝑃1 = 1, 𝑃2 = 2, 𝑃3 = 3, 𝑃4 = 5, 𝑃5 = 7 and 𝑃6 = 11. The 
sum of probabilities 𝐹𝒒 over all 𝒒 is one, so we need 𝑃𝑛 − 1 free param-
eters to describe the dynamics.

For 𝑛 > 3 players, more complicated relatedness terms than dyadic, 
triadic, tetradic, etc., are needed. For 𝑛 = 2, 𝑃2 − 1 = 1 suggests that 𝑟2 is 
enough; for 𝑛 = 3, 𝑃3 − 1 = 2 suggests that 𝑟2, 𝑟3 are enough; however, for 
𝑛 = 4, 𝑃4 − 1 = 4 suggests that 𝑟2, 𝑟3, 𝑟4 are not enough and an additional 
term is needed. In SI B, we characterise these additional relatedness 
terms, and we sketch a scheme for choosing which among the possible 
𝑃𝑛 − 1 relatedness terms to include to fully parameterise the system. In 
SI C, we show how the form of the payoff function may allow one to 
parameterise the model with fewer than 𝑃𝑛 − 1 relatedness coefficients 

(e.g., a linear public goods game can be parameterised with only one 
relatedness coefficient, 𝑟2).

3.1.2.  Payoff transformation
Because, in our framework, the relatedness coefficients are indepen-

dent of the strategy frequencies, the dynamics under homophily are 
equivalent to the dynamics in a transformed game in a well-mixed pop-
ulation where the transformation modifies the payoffs in a way that 
accounts for relatedness (Grafen, 1979). A 2-player game can be ex-
pressed in a matrix form, and thus the transformation of the payoffs can 
be expressed in terms of a transformed payoff matrix (e.g., Van Vee-
len, 2011; García et al., 2014). Analogously, an 𝑛-player game can be 
represented by a multidimensional matrix of dimension 𝑛, so we can 
obtain a transformed multidimensional matrix. Payoff-matrix transfor-
mations can be used to explore different mechanisms of inducing pop-
ulation structure (e.g., games played on graphs (Ohtsuki and Nowak, 
2006)) and different cooperation mechanisms apart from kin selection 
(Taylor and Nowak, 2007) (e.g., the tit-for-tat strategy transforms the 
Prisoner’s Dilemma payoff matrix into a Stag Hunt matrix Bowles and 
Gintis, 1998). The advantage of using a payoff-matrix transformation 
is that all of the techniques developed to study well-mixed populations 
can now be used study the more complex game. For example, by using 
a payoff-matrix transformation, Peña et al. (2015) was able to harness 
the theory of Bernstein polynomials (Peña et al., 2014) to study 𝑛-player, 
continuous 2-strategy games with genetic assortativity.

To gain the intuition, consider the generic 3-player 𝑚-strategy game 
above (Eq. (17)).

We seek a transformed payoff function 𝜋′ that satisfies 

𝜋𝑖 =
𝑚
∑

𝑗=1

𝑚
∑

𝑘=1
𝑝𝑗𝑝𝑘𝜋

′(𝒆𝑖, 𝒆𝑗 , 𝒆𝑘), (19)

which is the expression for the expected payoff to 𝑠𝑖-strategists in a well-
mixed population. We also wish to preserve the symmetry of the origi-
nal 𝜋 function (e.g., 𝜋(𝒆𝑖, 𝒆𝑗 + 𝒆𝑘) = 𝜋(𝒆𝑖, 𝒆𝑘 + 𝒆𝑗 )), so we require that the 
transformed payoff matrix also have the symmetry (e.g., 𝜋′(𝒆𝑖, 𝒆𝑗 , 𝒆𝑘) =
𝜋′(𝒆𝑖, 𝒆𝑘, 𝒆𝑗 )). We find that the following transformation satisfies our re-
quirements

𝜋′(𝒆𝑖, 𝒆𝑗 , 𝒆𝑘) = 𝐹[3]𝜋(𝒆𝑖, 2𝒆𝑖)

+ 𝐹[2,1]

[

1
3

(𝜋(𝒆𝑖, 2𝒆𝑗 ) + 𝜋(𝒆𝑖, 2𝒆𝑘)
2

)

+ 2
3

(𝜋(𝒆𝑖, 𝒆𝑖 + 𝒆𝑗 ) + 𝜋(𝒆𝑖, 𝒆𝑖 + 𝒆𝑘)
2

)]

+ 𝐹[1,1,1]𝜋(𝒆𝑖, 𝒆𝑗 + 𝒆𝑘). (20)

This approach can be generalised to the 𝑛-player, 𝑚-strategy game, 
and the methods for obtaining the transformed payoff matrix, describ-
ing the dynamics, assessing stability, and testing invasion fitness, are 
described in more detail in SI D. We have also made a detailed com-
parison between the payoff transformation proposed here and relevant 
results in kin selection literature in SI E.

3.2.  Accounting based on whole-group composition

Substituting the payoff to the focal individual from Eq. (4) into 
Eq. (7), we obtain the dynamics 

Δ𝑝𝑥 ∝ 𝔼[𝐺0,𝑥𝜋̂(𝒆𝑥,𝑮a)] − 𝑝𝑥
𝑚
∑

𝑖=1
𝔼[𝐺0,𝑖𝜋̂(𝒆𝑖,𝑮a)]. (21)

Note that previously (Eq. (8)), we calculated payoff as a function of 
focal and non-focal members’ strategies 𝜋(𝒆𝑖,𝑮nf), whereas in Eq. (21), 
we calculate payoff as a function of focal and all members’ strategies 
𝜋̂(𝒆𝑖,𝑮a). The random variable 𝑮a can take values from the set 

a =

{

𝒈a ∈ ℕ𝑚
≥0

|

|

|

|

|

𝑚
∑

𝑖=1
𝑔a,𝑖 = 𝑛

}

. (22)
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Fig. 1. An example calculating elements that contribute to ℙ[𝑮a = 𝒈a] where circles represent individuals in the group, different colours indicate different strategies 
pursued, and boxes delineate family members. (a) The set of all strategywise family-size distributions consistent with the strategy composition 𝒈a = (3, 2, 2), 𝒈a , is 
the Cartesian product of distributions 𝒈a,𝑖  that are consistent with the number of individuals pursuing each strategy 𝑖 (see also Example 3 in SI A.4). (b) For a given 
strategywise family-size distribution 𝒛, the probability of drawing those strategies for each family, 𝐴(𝒛,𝒑), is a product of strategy frequencies in the population. (c) 
The number of ways to allocate strategies to families, 𝐶(𝒛), is the count of multiset permutations of strategies across family-group sizes.

Eq. (21) can be written as (SI A.4) 

Δ𝑝𝑥 ∝ 𝔼
[𝐺a,𝑥

𝑛
𝜋̂(𝒆𝑥,𝑮a)

]

− 𝑝𝑥
𝑚
∑

𝑖=1
𝔼
[𝐺a,𝑖

𝑛
𝜋̂(𝒆𝑖,𝑮a)

]

=
∑

𝒈a∈a

(

𝑔a,𝑥
𝑛

𝜋̂(𝒆𝑥, 𝒈a) − 𝑝𝑥
𝑚
∑

𝑖=1

𝑔a,𝑖
𝑛

𝜋̂(𝒆𝑖, 𝒈a)

)

ℙ[𝑮a = 𝒈a].
(23)

To derive ℙ[𝑮a = 𝒈a], which is the probability that the group compo-
sition is 𝒈a, denote the family-size distribution of the 𝑔a,𝑖 individuals in 
the group who are 𝑠𝑖 strategists as 𝒛𝑖 =

(

𝑧𝑖,1,… , 𝑧𝑖,𝑛
)

, which is a vector 
of length 𝑛 whose 𝑘th element counts the number of families of size 𝑘
among group members pursuing strategy 𝑠𝑖 (see SI A for examples). De-
fine the whole group’s strategywise family-size distribution as the vec-
tor of each strategy’s family-size distribution 𝒛 =

(

𝒛1,… , 𝒛𝑚
)

, which is 
a collection of 𝑚 vectors. Then the set of all family-size distributions 
consistent with 𝑔a,𝑖 is 

𝑔a,𝑖 =

{

𝒛𝑖
|

|

|

|

|

𝑛
∑

𝑗=1
𝑗 𝑧𝑖,𝑗 = 𝑔a,𝑖

}

, (24)

and the set of all strategywise family-size distributions consistent with 
𝒈a is the Cartesian product 

𝒈a =
𝑚
⨉

𝑖=1
𝑔a,𝑖 . (25)

The whole group’s family-size distribution is 𝒚 = sum(𝒛)
(

∶=
∑𝑚

𝑖=1 𝒛𝑖
)

.
With these, the probability that the strategy distribution 𝒈a is realised 

through a particular group’s strategy-wise family distribution 𝒛 ∈ 𝒈a  is 
the probability 𝐹𝒚 that a group has family-size distribution 𝒚 = sum(𝒛), 
times the number of ways to allocate strategies to families, which is 
given by the product of multinomial coefficients 

𝐶(𝒛) =
𝑛
∏

𝑘=1

(
∑𝑚

𝑖=1 𝑧𝑖,𝑘
)

!
∏𝑚

𝑖=1 𝑧𝑖,𝑘!
, (26)

times the probability of drawing the family strategies properly to each 
family, which is given by 

𝐴(𝒛,𝒑) =
𝑚
∏

𝑖=1
𝑝‖𝒛𝑖‖𝑖 , (27)

where ‖𝒛𝑖‖ is the number of families in the group pursuing strategy 𝑠𝑖, 
i.e., ‖𝒛𝑖‖ =

∑𝑛
𝑘=1 𝑧𝑖,𝑘 (Fig. 1).

Therefore, we obtain (see SI A.4 for detailed derivation) 
ℙ[𝑮a = 𝒈a] =

∑

𝒛∈𝒈a

𝐶(𝒛) 𝐴(𝒛,𝒑) 𝐹sum(𝒛). (28)

As a result, the change in the proportion of 𝑠𝑥 in the population is

Δ𝑝𝑥 ∝
∑

𝒈a∈a

(

𝑔a,𝑥
𝑛

𝜋̂(𝒆𝑥, 𝒈a) − 𝑝𝑥
𝑚
∑

𝑖=1

𝑔a,𝑖
𝑛

𝜋̂(𝒆𝑖, 𝒈a)

)

⎛

⎜

⎜

⎝

∑

𝒛∈𝒈a

𝐶(𝒛) 𝐴(𝒛,𝒑) 𝐹sum(𝒛)

⎞

⎟

⎟

⎠

. (29)

Similarly to Section 3.1, by taking a proper limit (for example, letting 
𝛿(1 − 𝑠) → 0 and taking a proper time scale) in Eq. (7), the above equa-
tion becomes a continuous-time differential equation, as

𝑝̇𝑥 =
∑

𝒈a∈a

(

𝑔a,𝑥
𝑛

𝜋̂(𝒆𝑥, 𝒈a) − 𝑝𝑥
𝑚
∑

𝑖=1

𝑔a,𝑖
𝑛

𝜋̂(𝒆𝑖, 𝒈a)

)

⎛

⎜

⎜

⎝

∑

𝒛∈𝒈a

𝐶(𝒛) 𝐴(𝒛,𝒑) 𝐹sum(𝒛)

⎞

⎟

⎟

⎠

. (30)

Our approach assumes that the level of genetic homophily in group 
formation is independent of the strategies in the group. Therefore, to 
reduce the computational effort required to numerically analyse Δ𝑝𝑥 or 
𝑝̇𝑥, we precalculate the values 𝐶(𝒛) and powers ‖𝒛𝑖‖ in the expression 
for 𝐴(𝒛,𝒑) for an arbitrary ordering of strategies and given (𝑛, 𝑚) combi-
nation. These values are stored and can be referenced at each necessary 
stage of the calculations (see SI F for details). In the following section, 
we illustrate the approach’s use with an example.

4.  Example: coordinated cooperation in a public goods game with 
sigmoidal benefits

The aim of this section is to demonstrate the use of our theoretical 
framework. In particular, we study a public goods game in a scenario 
where interactions were between relatives in the ancestral past but are 
between non-kin today.

4.1.  Background

Shared intentionality is a key feature distinguishing human cooper-
ation from that of other apes, and involves individuals forming a col-
lective ‘we’ with a jointly optimised goal and coordinating their actions 
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towards achieving it (Genty et al., 2020; Tomasello, 2020). This capac-
ity, theorised to have evolved in coordination problems with interde-
pendent participants and mutually beneficial outcomes, underpins hu-
mans’ ability to cooperate with nonkin (Tomasello et al., 2012). It is 
often observed in experimental threshold public goods games (Palfrey 
and Rosenthal, 1984; Cadsby and Maynes, 1999; Archetti and Scheur-
ing, 2012), where groups designate a threshold number of members to 
contribute, and those designated follow through on their commitments 
(Van de Kragt et al., 1983; Mak et al., 2015; Palfrey et al., 2017). This 
behaviour aligns with intuition: when 8 people face a task requiring 4, 
it is logical to attempt to designate 4 members to the task, and failing 
that, to abstain to avoid wasting effort.

Newton (2017b) demonstrated that shared intentionality evolves un-
der fairly general conditions in a public goods game (PGG), specifi-
cally proving that shared intentionalists can both invade a population 
of defectors and persist. In this context, a PGG was defined as a game 
where one player’s contribution never negatively affects another player. 
Shared intentionality was modelled as agents coordinating their actions 
to achieve higher payoffs than the Nash equilibrium (typically universal 
defection). For example, in a discrete public goods game, shared inten-
tionalists might agree to cooperate only if a threshold number of others 
also commit to cooperation.

Despite these promising findings, two caveats to the evolution of 
shared intentionality remain. First, if contribution conflicts with indi-
vidual rationality (e.g., as will occur in a linear PGG), shared intention-
alists may be vulnerable to ‘liars’ who signal willingness to contribute 
but do not follow through (Newton, 2017b). Second, if coordination ca-
pacity entails a cost (e.g., cognitive abilities, communication), shared 
intentionalists may struggle to invade a population of defectors who do 
not pay these costs.

We investigated these caveats, beginning with the premise that, over 
the course of human lineage, there has been a shift from kin to nonkin 
interactions (Kuhn et al., 2001; Gamble et al., 2011; Brooks et al., 2018; 
Sehasseh et al., 2021; Ringbauer et al., 2021). Consequently, we mod-
elled kin selection to facilitate the initial invasion of Coordinated Coop-
eration (cf., Boyd et al., 2010; Takezawa and Price, 2010; Boyd et al., 
2014; Schonmann and Boyd, 2016; Kristensen et al., 2022). We also 
examined the strategy’s robustness to declining homophily over time, 
particularly its ability to resist invasion by liars. Previous research has 
also shown that even unconditional cooperation can persist evolution-
arily in well-mixed populations if the public good’s benefit has a non-
linear relationship with the number of cooperators (Peña et al., 2014). 
This persistence occurs in threshold PGGs (Palfrey and Rosenthal, 1984; 
Cadsby and Maynes, 1999; Archetti and Scheuring, 2012) and sigmoid-
shaped games (Bach et al., 2006; Boza and Számadó, 2010; Archetti and 
Scheuring, 2011; Peña et al., 2014; Archetti, 2018). Therefore, we mod-
elled a PGG with a flexible sigmoid-shaped benefits function. To model 
coordination, we modelled agents who use a random lottery to designate 
contributors, a method that is often observed in experimental threshold 
games (Van de Kragt et al., 1983) and has been used historically to as-
sign tasks and allocate burdens (Elster, 1988).

4.2.  Model

We model a nonlinear PGG where the benefit returned to each group 
member 𝐵(𝑘) has a sigmoid relationship with the number of individuals 
𝑘 who contribute. Contributors pay a cost 𝑐, and every group member 
receives benefit 𝐵(𝑘) regardless of whether or not they contributed. We 
constrain the parameter values so that contributing will present a social 
dilemma to a lone contributor (𝐵(1) < 𝑐).

We model 𝑚 = 4 strategies split into two types: unconditional and 
communicative. Unconditional types act independently and always play 
the same strategy. Unconditional Cooperators (U) always contribute and 
Unconditional Defectors (D) always defect. They do not discuss their 
plans with other group members, and it is assumed they are incapable 
of doing so.

Communicative players use a lottery (e.g., drawing straws) to deter-
mine who among them will contribute to the PGG. We make the sim-
plifying assumption that they have enough experience or insight into 
the game to aim for 𝜏 contributors, which corresponds to the inflection 
point of the sigmoid benefits function,  and is the contributor-group size 
that maximises the incentive for each contributor to remain a contribu-
tor (i.e., maximises 𝐵(𝜏) − 𝑐 − 𝐵(𝜏 − 1)).  We assume that these cognitive 
and communicative abilities entail a small cost 𝜀 that is paid whether 
or not the lottery takes place. Importantly, we assume that the agree-
ment reached via the lottery is only verbal. Verbal agreement allows for 
a ‘lying’ strategy that participates in the lottery but defects if chosen, 
thus inducing contributions from others and then free-riding on those 
contributions. Thus, we model two communicative types: Coordinating 
Cooperators (C), who participate in the lottery and follow-through if 
chosen; and Liars (L), who participate in the lottery, but will not con-
tribute even if they are chosen.

The game is played in two stages. In the first stage, if the number of 
communicative group members (C + L) meets or exceeds the quorum 𝜏, 
then the lottery takes place, and 𝜏 participants are randomly chosen to 
be contributors. If the quorum is not met, the lottery does not take place. 
In the second stage, group members independently decide whether or 
not to contribute to the public good: U always contribute; D and L always 
defect; and C contribute if a lottery took place and they were chosen, 
otherwise they defect.

We model the shift in human social structures—from interactions 
primarily among kin to those among nonkin—as a trend of decreas-
ing homophily in time. Specifically, we adopt the leader-driven group-
formation model introduced in Section 2.3, where ℎ is the parameter 
representing the degree of homophily (Eq. (1)). We obtain analytical re-
sults for two extreme cases in a small-group setting: an ancestral state 
with perfect homophily (ℎ = 1), where groups consist exclusively of fam-
ily members; and a contemporary state with zero homophily (ℎ = 0), 
where the population mixes freely. We also study how the change in 
homophily level, especially from larger values to smaller ones, affect 
the result. We then extend our investigation to larger groups using nu-
merical methods.

4.3.  Results

4.3.1.  Analytic results from a three-player game
To build our intuition before exploring a larger numerical example 

(next section), we performed an analysis of a three-player game (𝑛 = 3) 
with threshold 𝜏 = 2. We defined a sigmoid-shaped benefits function 

𝐵(𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑘 = 0,
𝛽 if 𝑘 = 1,
𝑏 − 𝛽 if 𝑘 = 2,
𝑏 if 𝑘 = 3.

(31)

where 𝛽 is a parameter that we can vary to explore the effect of nonlin-
earity on the dynamics, and we imposed the constraint 𝛽 < 𝑐 to ensure 
that contributing presented a social dilemma to a lone contributor.

We explored games between the two extremes of nonlinearity, from 
the threshold PGG when 𝛽 = 0 to the linear PGG when 𝛽 = 𝑏∕3 (Fig. 2). 
We also compared between the two extremes of homophily—perfect 
homophily (ℎ = 1) representing an ancestral state versus zero homophily 
(ℎ = 0) representing a contemporary society—such that our analytical 
results are independent of the group-formation model. To perform the 
analysis under homophily, we derived an expression for the transformed 
payoff matrix, which allowed us to treat the dynamics as though they 
were in a well-mixed population. We analysed the dynamics of pairs of 
strategies using the techniques of Peña et al. (2015), and we investigated 
whether or not new strategies can invade coexisting pairs. See SI G for 
the full analysis.

As a result, we found that in a well-mixed population without any 
family structure (contemporary scenario, ℎ = 0), Coordinating Cooper-
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Fig. 2. The benefits returned from the public good as a function of the number 
of contributors for (a) 𝛽 = 0, threshold game; (b) 𝛽 = 𝑏∕8, sigmoid game; and (c) 
𝛽 = 𝑏∕3, linear game. The maximum benefit has been normalised to 𝑏 = 1.

ators can persist in stable coexistence with Defectors (Fig. 3a). Coex-
istence can occur even in situations where Unconditional Cooperators 
cannot persist, including when the benefits function is linear (necessary 
condition in Eq. G.18). However, because of the cognitive cost 𝜀, Coor-
dinating Cooperators cannot invade from rarity into a population of all 
Defectors, which raises the question of how Coordinated Cooperation 
first arose.

We found that Coordinated Cooperation could have arisen in the 
ancestral past if there was some degree of homophily (cf., Kristensen 
et al., 2022). Homophily facilitates the invasion of C from rarity into 
a population of all-D (SI G.4.1). If the ancestral state had perfect ho-
mophily (ℎ = 1), then either a population of all Coordinating Coopera-
tors was stable (as shown in Fig. 3a) or a population of all Unconditional 
Cooperators was stable (Fig. G.3), depending on the parameter values 
(SI G.4.5). If the ancestral state was all-U, then as homophily declined 
over time, the population would eventually become invadable by Coor-
dinating Cooperators (SI G.4.5).

Assuming that Coordinating Cooperators evolved in one of the ways 
described above, we must still explain how it persists today, particularly 
how the population resists invasion by liars (Fig. 3b). We found that, 
when homophily is zero, Liars can invade the C+D coexistence if 𝑏 −
2𝛽 < 𝑐 (SI G.5.2). This occurs when the contribution cost 𝑐 is high, and 
it is guaranteed when the PGG is linear (𝛽 = 𝑏∕3) provided contribution 
presents a social dilemma to a lone contributor (𝛽 < 𝑐). However, if 
𝑏 − 2𝛽 > 𝑐, (32)

then Liars can never invade a C+D coexistence regardless of the ho-
mophily level (SI G.5.2). Eq. (32) is also a necessary condition for the 
strategy profile with 2 contributors to be a Nash equilibrium in the well-
mixed game with untransformed payoffs (Eq. H.15). For later use, we 
note that Eq. (32) can be re-written 𝐵(2) − 𝐵(1) > 𝑐.

4.3.2.  Numerical results from a many-player game
We generalised the sigmoid benefits function for a many-player game 

(Archetti, 2018) 

𝐵(𝑘) =
𝐿(𝑘) − 𝐿(0)
𝐿(𝑛) − 𝐿(0)

; 𝐿(𝑘) = 1
1 + 𝑒𝜎(𝜏−0.5−𝑘)∕𝑛

, (33)

where 𝑛 is the number of players, 𝑘 is the number of contributors, 𝜏 − 0.5
is the midpoint of the sigmoid benefits function, and 𝜎 is the steepness 
parameter. When 𝜎 = 0, the game is a linear PGG, and as 𝜎 → ∞, the 
game approaches the threshold game.

Similar to the analytical results from the 3-player game above, we 
found that the evolutionary dynamics in a many-player game can be di-
vided into two main regimes depending on the degree of nonlinearity in 
benefit function (SI H.2.1). If the switching gain from non-contribution 
to contribution at the coordination point is greater the cost of contribu-
tion 
𝐵(𝜏) − 𝐵(𝜏 − 1) > 𝑐, (34)

which occurs when contribution cost is low and the benefit function is 
more nonlinear, then in a well-mixed population, the C+D coexistence 

can resist invasion by Liars. Note that Eq. (34) corresponds to Eq. (32) 
for a 3-player game. Eq. (34) is also the condition for an all-C popula-
tion to resist invasion by Liars (SI H.2.4); a necessary condition for the 
strategy profile with 𝜏 contributors to be a Nash equilibrium in the well-
mixed game (SI H.2.2); and the condition under which Unconditional 
Cooperators will have a positive switching gain against Unconditional 
Defectors, which is a necessary but not sufficient condition for a coexis-
tence between Unconditional Cooperators and Defectors.

Next, we studied a numerical example for each of the two regimes, 
and we explored how the dynamics changed as homophily declined from 
an ancestral state of perfect homophily to a state of zero homophily 
today.

For a scenario where Eq. (34) is satisfied, as anticipated by the 3-
player example, we found an evolutionary trajectory that ended with a 
stable coexistence between Coordinated Cooperation and Unconditional 
Defection (Fig. 4a; details in I.1). When ancestral homophily was high, 
Unconditional Cooperation was the ancestral state. As homophily de-
clined, the all-U population became invadable by Coordinated Cooper-
ators, resulting in a U+C coexistence. A further decline in homophily 
allowed Unconditional Defectors to invade, resulting in a C+D coexis-
tence that persisted until zero homophily. Thus, the evolution of Coor-
dinated Cooperation between strangers is achieved.

However, the trajectory above assumes that, as homophily declines, 
each evolutionary steady state is invaded soon after it becomes invad-
able by a new strategy. When this assumption is relaxed, other tra-
jectories are possible that end with an all-Defector population instead 
of C+D. For example, if the initial all-U population persists for long 
enough as homophily declines, then it may be invaded by D first instead 
of C, resulting in a U+D coexistence (see the arrow from “U invadable” 
to the yellow “U+D” bar in Fig. 4a). If homophily declines further and 
Coordination is not ‘invented’ soon enough, then the population will be-
come ‘trapped’ in the U+D coexistence (see the uninvadable part of the 
yellow “U+D” bar that is marked with borders in Fig. 4a). As anticipated 
by the 3-player model (SI G.5.3), trapping occurs at the same homophily 
level that the all-D population becomes uninvadable to C. Specifically, 
a separatrix appears near the U-D axis (shown as a red dotted line in 
Fig. 5), and separates the C+D steady state from both the all-D and 
U+D states trapping populations there. As homophily declines further, 
the separatrix moves right while the stable-unstable U+D steady-state 
pair move towards each other. Eventually, the pair collides, the U+D 
coexistence disappears, and the population will end in an all-D state (see 
the arrow from “U+D” to the red “D” bar in Fig. 4a).

For our second model scenario, where Eq. (34) is not satisfied, the 
nonlinearity level 𝜎 tends to be smaller that the first scenario. In this 
scenario, the strategy profile with 𝜏 contributors is no longer a Nash 
equilibrium in the well-mixed game, and the only Nash equilibrium is 
non-contribution.

We found that some level of homophily must be maintained to pre-
vent cooperation from being entirely lost from the population (Fig. 4b, 
details in I.2). Initially, as homophily decreased from the ancestral state, 
the evolutionary dynamics changed in similar ways to the first exam-
ple, with an evolutionary route from all-U through U+C coexistence 
to C+D coexistence (see the arrows from “U” to “U+C” and from 
“U+C” to “C+D” in Fig. 4b). However, as homophily declined further, 
the C+D coexistence became invadable by Liars, which were subse-
quently invaded by D, leading to an all-Defector evolutionary endpoint 
(see the arrows from “C+D” to “C+D+L” and from “C+D+L” to “D”
in Fig. 4b).

4.3.3.  Results about computational costs
As the group size and number of strategies increases, the compu-

tation time required to evaluate 𝒑̇ increases combinatorially (Fig. 6a). 
This occurs because the total number of possible group strategy compo-
sitions increases combinatorially (cf. Allen et al., 2024), and the num-
ber of family-partition structures also increases at an increasing though 
lesser rate (SI J). In the Coordinated Cooperation example above, we 
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Fig. 3. An example of the evolutionary dynamics between the four strategies, where arrows represent the evolutionary trajectories between population states, and 
shaded nodes indicate uninvadable evolutionary end-states. In this example, (a) under perfect homophily, Coordinated Cooperation is the global evolutionary end-
state (see Fig. G.3 for the alternative case where Unconditional Cooperation is the end-state). (b) When the population is well-mixed, Unconditional Defectors are 
always one possible end-state. If the condition 𝑏 − 2𝛽 > 𝑐 (Eq. (32)) is satisfied, then a coexistence between Coordinating Cooperators and Defectors (C+D) is also a 
possible end-state; however, if the condition is not satisfied, then C+D can be invaded by Liars.

Fig. 4. A qualitative summary of the evolutionary dynamics as homophily declines over time for scenarios where the strategy profile with 𝜏 contributors is (a) a Nash 
equilibrium in the well-mixed game (𝜎 = 10), or (b) not a Nash equilibrium (𝜎 = 6). Horizontal bars represent population states and arrows indicate the evolutionary 
trajectories after an invasion. To simplify the summary, we assume that new strategies invade one at a time; that the evolutionary dynamics have enough time to 
stabilise before the next invasion, i.e., separation of timescales; and that Liars cannot be invaded before Coordinating Cooperators, i.e., it does not make sense to lie 
about an activity that has not yet been invented (see SI for full analysis). Default parameter values: 𝑛 = 8, 𝜏 = 5, 𝑐 = −0.25, and 𝜀 = 0.02. The evolutionary dynamics 
when homophily ℎ = 0.15 are plotted in Fig. 5.

were able to achieve numerical tractability because we considered only 
4 strategies. In general, numerical tractability is restricted to problems 
with a modest group size and number of strategies.

Whether it is faster to obtain solutions using the whole-group ac-
counting (Eq. (29)) or other-member accounting (e.g., Eq. (20)) depends 
on the particulars of the problem. For example, when numerically solv-
ing for the steady states, 𝒑̇ must be evaluated many times. When using 
the other-member accounting, the transformed payoffs can be stored in 
a matrix form (details in SI D), and then each evaluation of 𝒑̇ is obtained 
by repeated matrix multiplications. Calculating the transformed payoffs 
entails a high overhead cost; however, the overhead can be worth the 
trade-off in efficiency gained for each evaluation of 𝒑̇ (e.g., Fig. 6b), 
which is efficient because because matrix multiplication is an operation 
for which numerical software is typically optimised.

5.  Discussion

We have provided an analytical description for the evolutionary dy-
namics of strategies in games with kin assortativity. Our approach in-
volves the use of genetically homophilic group-formation models, which 
provide the higher-order relatedness coefficients needed to describe the 
dynamics, and we have demonstrated how the dynamics can be solved 
with examples. We studied a public goods game with 4 strategies, where 
both the Coordinated Cooperation and Liar strategies required insight 
into the game and communication abilities. We discuss each in turn
below.

5.1.  General approach

We have provided an analytical description of the evolutionary dy-
namics of discrete strategies in group games where group members are 
a mix of kin and nonkin and game payoffs are not necessarily addi-
tive. When games are played between 2 or 3 individuals, the dynamics 
can be described analytically in terms of dyadic and triadic relatedness 
(Eqs. (16) and (17)). However, as the group size and number of strate-
gies increases, the number of relatedness terms needed increases com-
binatorially (cf. Allen et al., 2024). Nevertheless, we found that it is still 
practical to solve the dynamics numerically for modestly sized scenarios 
of theoretical interest.

Our central results are as follows. In Section 3.1 we have derived 
replicator equations, Eqs. (11), (12), for family structured populations. 
We have found that they are described by family partition probabili-
ties {𝐹𝒒} or by a proper set of relatedness coefficients (detailed in Sec-
tion 3.1.1; see also SI B and SI C). We have also found a formula to trans-
form the payoff functions. These transformed payoff functions allow us 
to study evolutionary game dynamics in a family-structured population 
as if it were a well-mixed population (detailed in Section 3.1.2; see also 
SI D). Our method can be used to rederive previous results from spe-
cific models of synergistic interactions, and we do so for a selection of 
models (Queller, 1985; Gardner et al., 2011; Taylor and Maciejewski, 
2012; Taylor, 2017) in SI E. Moreover, we have derived another game-
dynamics equations based on the whole-group accounting, Eqs. (29),
(30), which are mathematically equivalent to the replicator equations 
we have derived in Eqs. (11), (12). Although those equations look less
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Fig. 5. Evolutionary dynamics and steady states on the faces of the tetrahedral 
strategy space for the scenario where Eq. (34) is satisfied (Fig. 4 a, 𝜏 contrib-
utors is a Nash equilibrium in the well-mixed game) when homophily is low 
(ℎ = 0.15). Blue dots represent states of stable coexistence between the strategies 
present in the population that may nevertheless be invadable by other strate-
gies, and red dots represent unstable equilibria (2 unstable interior equilibria 
not shown because they lie inside the tetrahedron). A population at the U+D 
coexistence cannot be invaded by Coordinating Cooperators due to the sepa-
ratrix (red dashed) on the (D, U, C) face (the bottom triangle). As homophily 
declines further, the stable-unstable equilibria pair on the D-U axis will collide 
and disappear and the population will evolve to an all-D state. Therefore, if 
Coordinated Cooperation has not been established in the population before the 
collision, then cooperation will be lost from the population.

intuitive, they are computationally more tractable, and those expres-
sions greatly help us implement the code for numerical calculations (de-
tailed in Section 3.2; see also SI F).

Our approach is particularly aimed at scenarios where (1) group 
members are potentially related, (2) fitness effects are not necessar-
ily additive, and (3) strategies are best modelled as discrete. Histori-
cally, there has been a split (discussed in Ohtsuki, 2014) between kin-
selection models that address point (1) (e.g., Taylor and Frank, 1996) 
and evolutionary game-theoretic models that address points (2) and (3) 
(e.g. Hauert et al., 2006). Nevertheless, all three can co-occur. For ex-
ample, the benefits returned from punishment likely have a nonlinear 
relationship with the number of punishers (Raihani and Bshary, 2011; 
Roberts, 2013; Raihani and Bshary, 2015), and food sharing between 
relatives (Gurven et al., 2000; Schweinfurth and Call, 2019; Jaeggi 
and Gurven, 2013) combines inclusive fitness benefits with reciprocity 
(Allen-Arave et al., 2008) in potentially synergistic ways (Jones, 2000; 
Van Cleve and Akçay, 2014).

Our assumption that groups form and dissolve with each interaction 
(Godfrey-Smith and Kerr, 2009) implies that offspring compete globally, 
which is an assumption that favours the evolution of cooperation under 
kin assortativity (West et al., 2006). This can be contrasted with limited 
dispersal models where the inclusive fitness benefits of increasing the 
fecundity of one’s kin can be cancelled out by the concordant increase 
in competition between kin (Taylor, 1992). It can also be contrasted 
with social learning models where high-payoff strategies are copied from 
group members instead of the population at large, and where kin assort-
ment can also hinder the evolution of cooperation (Martin and Lessard, 
2023).

We have assumed that groups’ family partition-structure probabil-
ities are independent of strategy composition, which is a very strong 
assumption. For example, in the Wright’s infinite-islands model, where 

an infinite population is split into an infinite number of subpopula-
tions (‘islands’) with occasional dispersal between them (Wright, 1931; 
Lehmann and Rousset, 2010; Rousset, 2013), this assumption can be 
easily violated, because under natural selection different strategies can 
have different genealogical relationships. Moreover, under natural se-
lection, strategy frequencies in the current population are generally dif-
ferent from those frequencies in the past, which is another obstacle in 
formulating the dynamics. In our approach, dynamical sufficiency is ob-
tained by assuming that family partition probabilities are independent 
of strategy composition and that the strategy that each family adopts is 
determined by the current frequencies of strategies in the population. 
Those ideal assumptions can hold in a broader class of group-formation 
models under neutrality, where there are no difference between “strate-
gies”, so our approach remains valid as an approximation if one assumes 
that strength of selection, 𝛿, is weak enough (see SI K). We highlight this 
as an area for future work.

Our group-formation models may be directly reinterpreted in the 
style of the ‘matching rule’ models commonly used in economics, which 
we hope will be useful to workers in that field. Economists typi-
cally model homophilic attraction on the basis of similarity in strategy 
rather than ancestry, and the resulting matching rule is a function that 
maps from the population strategy frequencies (𝒑) to the probability 
distribution of different group strategy compositions (ℙ[𝑮 = 𝒈]) (e.g., 
Bergstrom, 2003). Matching-rule models have been used to study a di-
verse range of topics including Kantian morality (Alger and Weibull, 
2013), supply-chain dynamics (Chai et al., 2021), cross-cultural cooper-
ation (Bilancini et al., 2018), and feedback from group-level changes in 
assortativity through democratic (Nax and Rigos, 2016; Wu et al., 2016) 
or top-down (Wu, 2019) processes. However, although the matching-
rule formalism (Jensen and Rigos, 2018) can be applied to any 𝑛-player 
𝑚-type scenario, most work has focused on 2 players and 2 types. Ap-
plying matching rules in many-player many-strategy scenarios is diffi-
cult for the same reason as in kin-assortative models: one must account 
for the statistical dependency between the focal and nonfocal members’ 
strategies (Alger and Weibull, 2014, 2019). However, one can account 
for that dependency using our models by reinterpreting our genetically 
homophilic process in terms of strategy matching: replace ‘recruitment 
of a family member’ with ‘recruitment of the same type’, and replace 
‘recruitment of a non-family member’ with a ‘mistake’ that results in a 
random draw from the population.

We wish to highlight some related modelling approaches that cir-
cumvent some of the assumptions made in our own work. First, we have 
assumed a fixed group size; however, Garcia and De Monte (2013) mod-
elled a variable-sized public goods game where group formation was 
by players (microbes) physically adhering to one another. Second, we 
have assumed that the order in which individuals are recruited to the 
game does not influence their fitness effects on other group members; 
however, Gokhale and Traulsen (2010) described a model where dif-
ferent orderings resulted in different payoffs. This may be particularly 
relevant to our leader-driven group-formation model; we assumed the 
leader plays the same role in the collective action as any other group 
member, but real-life leadership typically involves additional costs and 
benefits to the role (e.g., Lévi-Strauss, 1945). Third, we have assumed 
the same level of genetic homophily for all individuals regardless of 
their strategies (cf. Bergstrom, 2013). This precludes investigation of 
the evolution of assortativity (e.g., Newton, 2017a) and may be rele-
vant when a shortage of viable group members can prevent the game 
from occurring. Indeed, we assumed an infinite population where there 
are always recruitment candidates available to form a group; however, 
in finite populations, there may be a trade-off between restricting mem-
bership to kin and the size of the group that can be recruited towards a 
collective task (Avilés et al., 2004; Mehdiabadi et al., 2006). Finally, we 
wish to draw the reader’s attention to Allen et al. (2024), who similarly 
considered nonlinear interactions with assortment but in a finite pop-
ulation, and derived an expression for ‘collective inclusive fitness’ that 
centred on collectives as actors instead of individuals.
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Fig. 6. How computation time varies with the parameters of the problem and method used. (a) The computational time required to calculate 𝑝̇𝑥 as a function of group 
size and number of strategies using the whole-group approach (Eq. (29)). (b) Comparing the computational time required to identify the evolutionary steady states 
using the whole-group approach versus the transformed payoff-matrix approach (SI D) using the example from Fig. 4 a with homophily ℎ = 0.15 and 𝜏 = floor(5𝑛∕8).

We offer some general advice for those wishing to use our methods. 
If the key attributes of the scenario can be captured with just a few play-
ers, then it may be possible to obtain analytic insights into the dynamics 
under homophily by analysing the transformed payoff matrix (see, for 
example, Peña et al. (2014) and Peña et al. (2015) for the analysis of 
2-strategy games). For example, we began our analysis of Coordinated 
Cooperation by analysing 3-player games (SI G), and our code, which 
uses the SymPy symbolic mathematics library, may assist readers with 
their own analysis. As the number of players and strategies increases, a 
combinatorial explosion in the number of terms in Eq. (29) necessarily 
occurs. Nevertheless, for modestly sized groups and numbers of strate-
gies, it still practical to obtain numerical solutions (Fig. 6a). Whether 
one should use the other-member or whole-group accounting depends 
on the particulars of the problem (e.g., Fig. 6b). The whole-group ac-
counting (i.e., Eq. (29)) is more efficient when group size is large, but in 
situations where Δ𝒑 must be evaluated many times, e.g., when numer-
ically solving for the steady states, the overhead cost of evaluating the 
transformed payoff matrix may be worth the trade-off (Fig. 6b). Python 
code to perform all calculations has been uploaded to the Github col-
laborative platform where tutorials can also be found (SI L).

5.2.  Coordinated cooperation example

We used our new methods to investigate how Coordinated Coop-
eration might evolve in a public goods game with economies of scale 
(sigmoid payoff). Coordination is significant both because it relies on 
distinctively human faculties and because it can allow cooperation to 
persist between nonkin in situations where unconditional cooperation 
cannot. We considered a scenario where genetic homophily was higher 
in the past and declined over time, which reflects the general trend that 
has occurred over the course of the human lineage (Gamble et al., 2011; 
Marwick, 2003; David-Barrett, 2020; Ringbauer et al., 2021). We found 
that high ancestral homophily facilitated the initial invasion of Coordi-
nated Cooperation; however, in order for it to persist, either some level 
of homophily must be maintained, or contributing at the coordination 
point must be in players’ self-interests (Fig. 4). We discuss each of these 
findings in turn.

Our first finding, that kin selection facilitated the invasion of Coordi-
nated Cooperation, means that ancestral homophily can provide a step-
ping stone for the evolution of cooperation between nonkin (cf., Kris-
tensen et al., 2022). In our model, the resource costs of cognition and 
communication (𝜀) prevented Coordinated Cooperation from evolving 
between nonkin (cf., Newton, 2017b). However, if Coordinated Coop-
eration invades first by kin selection, then it may persist even if ho-
mophily later declines (see also Dos Santos and West, 2018). Ances-

tral kin selection has been proposed to explain how other cooperative 
behaviours first evolved, including: conditional cooperation in iterated 
games (Takezawa and Price, 2010; Schonmann and Boyd, 2016), reci-
procity (Axelrod and Hamilton, 1981; Carter, 2021), punishment (Boyd 
et al., 2010, 2014), and unconditional cooperation in threshold games 
(Bach et al., 2006; Kristensen et al., 2022) (but see: Lehmann et al., 
2007; Martin and Lessard, 2023, 2024). In these examples, past kin se-
lection facilitated the initial invasion of the strategy, which was then 
able to persist even as interactions shifted from kin to strangers. This dy-
namical role for kin selection can be contrasted with the cooptation and 
preadaptation hypotheses, where kin psychology provides a framework 
for coalitional structure (Smith, 2003; Read, 2010; Moffett, 2013) and a 
substrate to build more inclusive group-membership rules to solve more 
complex coordination problems (Alvard, 2009). Cooptation hypotheses 
are not mutually exclusive with dynamical facilitation, and all mecha-
nisms likely played a role.

Our second finding was that, once Coordinated Cooperation has in-
vaded by kin selection, in order to persist as homophily declines, it must 
either be in coordinators’ self-interests to follow through on the agree-
ment (e.g., Fig. 4a) or some degree of homophily must be maintained in 
the population (e.g., Fig. 4b). Self-interest is satisfied when costs are low 
and benefits are sufficiently nonlinear. Specifically, when there is a pos-
itive switching gain from non-contribution to contribution at the coordi-
nation point (Eq. (32); Eq. (34)), then Coordinated Cooperation can per-
sist in coexistence with Defection and the population can resist invasion 
by Liars even if homophily declines to zero. However, if the switching-
gain condition is not satisfied, then in order for the population to resist 
invasion by Liars, some degree of homophily must be maintained. Ho-
mophily helps by increasing the probability that individuals pursuing 
the same strategy are in the same group, including the probability that 
Liars will be grouped with Liars. The degree of homophily required to 
maintain Coordinated Cooperation is lower than that needed for Coordi-
nating Cooperators to invade a population of Defectors in the first place 
(e.g., in Fig. 4b, as homophily declines, the uninvadable D-state begins 
before uninvadable C+D state ends). In general, coordination is known 
to interact synergistically with relatedness (Jones, 2000).

We have made the simplifying assumption that Coordinating Coop-
erators choose the number of contributors that matches the number that 
is most conducive to the maintenance of cooperation (i.e., 𝜏); however, 
the problem of choosing the coordination point can be non-trivial. For 
example, in an experimental common-pool resource game, Ostrom et al. 
(1992) observed groups who were either unable to identify the group 
optimum or devised ambiguous or unnecessarily complicated rules that 
hampered their ability to achieve the social optimum. However, we also 
note that ‘knowledge’ of the best coordination point does not have to be 
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mechanistic (Henrich, 2021; O’Madagain and Tomasello, 2022), and fu-
ture work may involve modelling the coordination point as a cultural 
trait.

One alternative explanation for the emergence of Coordinated Co-
operation is that populations are sufficiently small for mutant invaders 
to overcome the separatrix through chance. The separatrix on the D-
C axis (i.e., the unstable steady-state (red dot) in Fig. 5) puts a small 
subpopulation of Coordinating Cooperators at a selective disadvantage. 
Because our model assumes a very large (infinite) population with de-
terministic dynamics, such a subpopulation is inevitably driven to ex-
tinction. However, in finite populations, stochastic forces come into 
play, potentially driving the frequency of a selectively disadvantaged 
subpopulation past the separatrix through drift. For example, Nowak 
(Sec. 7.4, 2006) demonstrated this principle with tit-for-tat (TFT) strate-
gies, which cannot invade a population of all-defectors in infinite pop-
ulations because TFT receives the sucker’s payoff in the first round (Ax-
elrod and Hamilton, 1981). Yet in finite populations, TFT can both in-
vade and reach fixation, and is in fact favoured by selection because its 
fixation probability exceeds that of defectors invading an all-TFT pop-
ulation. In a similar way, Coordinating Cooperators may invade a pop-
ulation of all Defectors, particularly when the cognitive cost is small, 
which positions the separatrix close to the all-D state. Moreover, they 
may stochastically increase beyond the deterministic coexistence fre-
quencies (i.e., blue dot on D-C axis in Fig. 5) and temporarily achieve
fixation.

Another alternative explanation for the emergence of Coordinated 
Cooperation is that the probability that players explore alternative 
strategies is sufficiently high to overcome the separatrix. For example, 
Imhof et al. (2005) investigated the deterministic dynamics in an infinite 
population of TFT, always defect (ALLD), and always cooperate (ALLC) 
players. Importantly, their dynamics were governed by a ‘replicator-
mutator equation’, which explicitly includes the mutation rate rather 
than modelling mutations as very rare events like our model. They found 
that, when the separatrix between ALLD and TFT was sufficiently close 
to ALLD, and when the mutation rate was sufficiently high, ALLD loses 
stability, and TFT (and ALLC) can invade (see also greyed areas in Fig. 1 
of Traulsen et al. (2009)). When strategies are genetically encoded, it is 
less justifiable to model a mutation process with high rates that causes 
large changes in strategy phenotype. However, such assumptions may 
be appropriate in social learning or cultural evolution models, where 
‘mutation’ represents players exploring alternative strategies (Traulsen 
et al., 2009).

Our model is consistent with some experimental results but not oth-
ers. Behavioural experiments find that cheap talk enhances cooperation 
in threshold PGGs (Van de Kragt et al., 1983; Mak et al., 2015; Palfrey 
et al., 2017), and that participants will believe others’ announcements 
about whether or not they intend to contribute (Palfrey and Rosenthal, 
1991). Our model explains that these commitments are believable be-
cause they are in the commitment-makers’ self-interest and therefore 
may persist evolutionarily among strangers. Such self-enforcing commit-
ments hold practical importance, e.g., for designing effective climate-
change agreements (Barrett, 2016). Understanding the origins of self-
enforcing commitments also bridges the gap between cooperative and 
non-cooperative game theory (Newton, 2017b).

A more challenging puzzle, however, is how to explain commit-
ments among non-kin that are not self-enforcing. This raises questions 
about the commitment norm, i.e., that one should do what one has 
promised (Kerr and Kaufman-Gilliland, 1994), and why some partici-
pants follow through on their commitments even if doing so goes against 
their self-interest (Balliet, 2010). Commitment behaviour develops early 
in humans (Kachel et al., 2018; Kachel and Tomasello, 2019; Chalik 
and Rhodes, 2020), and joint commitment is one of the key attributes 
that distinguishes human cooperation from that of other apes (Genty 
et al., 2020; Tomasello, 2020). For example, in a collaborative situa-
tion where one individual receives their reward early, 3.5-year-old chil-
dren will continue contributing until their partner also receives their 

reward (Hamann et al., 2012), whereas chimpanzees do not distinguish 
between continuing to help in an existing collaboration versus start-
ing a new one (Greenberg et al., 2010). It has been hypothesised that 
joint commitment evolved in concert with shared intentionality in the 
context of interdependent collaboration (Tomasello, 2020); however, 
our model shows that interdependence is not enough for joint com-
mitments to persist. If shared intentionality did indeed evolve in this 
context, then commitment beyond self-interest must be interpreted as 
a ‘mistake’ similar to altruistic behaviour in general, i.e., either as the 
result of ambiguous cues and an adaptive bias towards less costly errors 
(Haselton et al., 2015) or as a maladaptive response to a novel social 
environment (Burnham and Johnson, 2005; Hagen and Hammerstein, 
2006; El Mouden et al., 2012). Alternatively, such commitments may 
persist through an additional mechanism, such as indirect reciprocity, 
where players selectively cooperate based on their partner’s reputation 
from previous interactions (reviewed in Okada, 2020). This amounts 
to a strategy-based rather than familial homophily. Then such commit-
ments may not be maladaptive unless they involve a ‘mistake’ regarding 
the true reputational costs of reneging. Understanding how cooperation 
under reputation evolves requires investigating reputational rules: how 
players in ‘good’ or ‘bad’ standing should treat others based on their 
respective standings (Ohtsuki and Iwasa, 2006; Fujimoto and Ohtsuki, 
2023). The model of Krellner and Han (2025) is particularly relevant 
here, as it examines scenarios where players can make a public commit-
ment to cooperate before playing a Prisoner’s Dilemma, with standing 
determined by commitment adherence alone. They demonstrated that 
cooperation can be sustained when defection is judged as ‘bad’ but only 
when a commitment was broken, which aligns with the typical formu-
lation of commitment norms (Kerr and Kaufman-Gilliland, 1994), the 
additional clout promises gain from being made explicit (Kachel and 
Tomasello, 2019), and the normative judgements made against those 
who renege (e.g., tattling, Kachel et al., 2018).

As a conclusion of this coordination example part, our analysis re-
veals how the distinctively human capacity for coordinated cooperation 
may have threaded a narrow evolutionary pathway: first emerging in 
ancestral environments rich with kinship ties, then persisting through a 
combination of residual levels of homophily and mutual benefits. This 
model can help resolve apparent paradoxes in human social behaviour, 
where self-interest and sophisticated cooperation coexist. It also sug-
gests that successful coordination in contemporary settings may depend 
less on appealing to altruism or moral obligations, and more on creating 
conditions where coordination agreements naturally align with individ-
ual interests.
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A Analytic results

A.1 Strategy indicator variables
We consider games with m possible strategies, s1, . . . , sm, played in groups of size n. We

index the individuals in the group j = 0, . . . , n− 1, and reserve index 0 for the focal individual.
Let ex be an m-dimensional vector with a 1 in the x-th position and 0 in all others

ex = (0, . . . , 0, 1︸︷︷︸
x−th

, 0, . . . , 0). (A.1)

The strategy indicator for an individual j that pursues strategy sx is

gj = ex. (A.2)

The whole-group strategy composition is defined as the sum of individual strategy indicators

ga = g0 + g1 + . . .+ gn−1, (A.3)

such that the i-th component counts the number of group members who pursue strategy si,
and similarly the nonfocal strategy composition is defined as

gnf = g1 + . . .+ gn−1, (A.4)

which counts the number of individuals in the group apart from the focal individual who pursue
each strategy si.

Example 1. Consider the group illustrated below, which is playing a game with m = 4 possible
strategies, where each coloured circle represents an individual j, and the colours indicate the
individual’s strategy, which is also written within the circle

j = 0

s2

j = 1

s1

j = 2

s4

j = 3

s2

j = 4

s1

j = 5

s1

The strategy indicators for each individual are

g1 = g4 = g5 = (1, 0, 0, 0),

g0 = g3 = (0, 1, 0, 0),

g2 = (0, 0, 0, 1).

The whole-group strategy composition is

ga = (3, 2, 0, 1),

and the nonfocal strategy composition is

gnf = (3, 1, 0, 1). ◁

S3



A.2 Evolutionary dynamics from Price equation
Let px be the proportion of individuals in the population pursuing strategy sx. From the

Price equation (Price, 1970), the change in the proportion of sx strategists in the population is
given by

w ∆px = Cov[G0,x,W0], (A.5)

where w is the average fitness in the population (w = 1 when population size constant), Cov is
covariance, and G0,x is the x-th element of the focal individual’s strategy indicator G0 and an
indicator variable

G0,x =

{
1 if the focal individual pursues strategy sx,

0 otherwise.
(A.6)

The expected fitness W0 of the focal individual is

W0 = s+ (1− s)
1 + δΠ0

1 + δπ
, (A.7)

where Π0 is the payoff of the focal individual and π is the average payoff in the population.
The survival probability s, and selection strength δ are constants.

To obtain Eq. 7 in the main text, we substitute Eq. A.7 into Eq. A.5 and apply the covariance
identity

Cov[X, aY + b] = aCov[X, Y ], (A.8)

where a, b are constants. Specifically, we have

∆px = Cov
[
G0,x, s+ (1− s)

1 + δΠ0

1 + δπ

]
,

=
δ(1− s)

1 + δπ
Cov [G0,x,Π0] , (A.9)

and therefore
∆px ∝ Cov [G0,x,Π0] . (A.10)

A.3 Accounting based on other-member composition
In the light of Eq. 3, the payoff to the focal individual from the game can be written in

terms of the nonfocal strategy composition

Π0 =
m∑
i=1

G0,iπ(ei,Gnf). (A.11)

Substituting Eq. A.11 into Eq. A.10 and applying the identity

Cov[X, Y ] = E[XY ]− E[X] E[Y ], (A.12)
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we obtain

∆px ∝ Cov

[
G0,x,

m∑
i=1

G0,iπ(ei,Gnf)

]
,

= E

[
m∑
i=1

G0,xG0,iπ(ei,Gnf)

]
− E [G0,x] E

[
m∑
i=1

G0,iπ(ei,Gnf)

]
,

= E [G0,xπ(ex,Gnf)]− px

m∑
i=1

E [G0,iπ(ei,Gnf)] , (A.13)

where we used E [G0,x] = px.
Let gnf be the value of Gnf. It can take values from the set

Gnf =

{
gnf ∈ Nm

≥0

∣∣∣∣∣
m∑
i=1

gnf,i = n− 1

}
. (A.14)

The expectations in Eq. A.13 is thus

E [G0,iπ(ei,Gnf)] =
∑

gnf∈Gnf

π(ei, gnf)P[G0 = ei,Gnf = gnf],

=
∑

gnf∈Gnf

π(ei, gnf)P[G0 = ei]︸ ︷︷ ︸
pi

P[Gnf = gnf | G0 = ei],

= pi
∑

gnf∈Gnf

π(ei, gnf)P[Gnf = gnf | G0 = ei]︸ ︷︷ ︸
πi

, (A.15)

where πi is the expected payoff to si strategists.
Substituting the expectations (Eq. A.15) into Eq. A.13, we obtain Eq. 11 in the main text:

∆px ∝ px

(
πx −

m∑
i=1

piπi

)
= px (πx − π) . (A.16)

By taking a proper limit and a proper time scale, we obtain Eq. 12 in the main text:

ṗx = px (πx − π) . (A.17)

A.4 Accounting based on whole-group composition
In the light of Eq. 4, the payoff to the focal individual from the game can be written in

terms of the whole group’s strategy composition

Π0 =
m∑
i=1

G0,iπ̂(ei,Ga). (A.18)
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By substituting Eq. A.18 into Eq. A.10 and applying the identity in Eq. A.12, we obtain

∆px ∝ Cov

[
G0,x,

m∑
i=1

G0,iπ̂(ei,Ga)

]
,

= E [G0,xπ̂(ex,Ga)]− px

m∑
i=1

E [G0,iπ̂(ei,Ga)] . (A.19)

Let ga be the value of Ga. It can take values from the set

Ga =

{
ga ∈ Nm

≥0

∣∣∣∣∣
m∑
i=1

ga,i = n

}
. (A.20)

The expectations in Eq. A.19 is thus

E [G0,iπ̂(ei,Ga)] =
∑
ga∈Ga

π̂(ei, ga)P[G0 = ei,Ga = ga],

=
∑
ga∈Ga

π̂(ei, ga)P[G0 = ei | Ga = ga]︸ ︷︷ ︸
ga,i
n

P[Ga = ga],

= E
[
Ga,i

n
π̂(ei,Ga)

]
. (A.21)

Substituting the expectations (Eq. A.21) into Eq. A.19, we obtain

∆px ∝ E
[
Ga,x

n
π̂(ex,Ga)

]
− px

m∑
i=1

E
[
Ga,i

n
π̂(ei,Ga)

]

=
∑
ga∈Ga

(
ga,x

n
π̂(ex, ga)− px

m∑
i=1

ga,i

n
π̂(ei, ga)

)
P[Ga = ga]. (A.22)

The probability P[Ga = ga] depends on the family partition structure of the group, and
we have the probability distribution of family partition structures from the homophilic group-
formation model. However, the family structures that are possible for a given strategy com-
position ga are constrained: individuals with the same strategy can be from different families,
but individuals with different strategies cannot be from the same family. Therefore, to identify
the family partition structures consistent with ga, we identify the possible partition structures
for each strategy that are consistent with in ga.

We start with the family-size distribution of si strategists in a group. Let

zi = (zi,1, zi,2, . . . , zi,n) . (A.23)

represents the the family-size distribution of si strategists, where its k-th component zi,k rep-
resents the number of size-k families among si strategists. The whole group’s strategywise
family-size distribution is defined as a vector of each strategy’s family-size distribution

z = (z1, . . . ,zm) , (A.24)

which is an m dimensional vector, each of whose component is an n dimensional vector. The
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group’s family-size distribution can be calculated from the strategywise family-size distribution
as

y = sum(z) :=
m∑
i=1

zi.

Example 2. Consider the group illustrated below, where the boxes group together individuals
who are family members

s1 s1 s1 s2 s2 s4

Each strategy’s family-size distribution is

z1 = (1, 1, 0, 0, 0, 0),

z2 = (0, 1, 0, 0, 0, 0),

z3 = (0, 0, 0, 0, 0, 0),

z4 = (1, 0, 0, 0, 0, 0),

and the group’s strategywise family-size distribution is

z =
(
(1, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)

)
,

The group’s family-size distribution is

y = sum(z) = (2, 2, 0, 0, 0, 0). ◁

Given the strategy composition ga ∈ Ga in a group, we ask which strategywise family-size
distribution z of the group is consistent with ga. According to ga, there are individuals with
different strategies that must be from different families, and there are individuals with the same
strategy that may be from the same family or different families, so zi must be consistent with
this. In fact, zi is consistent with ga,i if and only if

n∑
k=1

k zi,k = ga,i (A.25)

holds. We write the set of all family-size distributions that are consistent with ga,i, as

Zga,i =

{
zi

∣∣∣∣∣
n∑

k=1

k zi,k = ga,i

}
. (A.26)

Therefore, the set of all strategywise family-size distributions z that are consistent with g is

Zga
=
{
z = (z1, . . . ,zm)

∣∣ z1 ∈ Zga,1 , . . . ,zm ∈ Zga,m

}
, (A.27)
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which is the Cartesian product of ga,i’s (see Example 3 for an illustrative example)

Zga
= Zga,1 × . . .×Zga,m . (A.28)

Example 3. Consider a group with strategy composition

ga = (3, 2, 0, 1).

This group has 3 members pursuing strategy s1, 2 members pursuing strategy s2, 1 members
pursuing strategy s4.

The members who are pursuing different strategies (e.g., s1 and s2) must be in separate
families from each other. However, the members who are pursuing the same strategy (e.g., the
2 members pursuing strategy s2) can either be in the same family or in separate families.

For the 3 members pursuing strategy s1, the possible family-size distributions (Z3) can
shown graphically as below, where boxes indicate the family boundaries

s1 s1 s1

s1 s1 s1

s1 s1 s1

For the 2 members pursuing strategy s2, the possible family-size distributions (Z2) are

s2 s2

s2 s2

For the single member pursuing strategy s4, there is only 1 possible family-size distribution
(Z1)

s4

Therefore, the set of all possible strategywise family-size distributions is the Cartesian product
of each strategy’s possible family-size distributions above

s1 s1 s1 s2 s2 s4

s1 s1 s1 s2 s2 s4

s1 s1 s1 s2 s2 s4

s1 s1 s1 s2 s2 s4

s1 s1 s1 s2 s2 s4

s1 s1 s1 s2 s2 s4

In math, the set of all family-size distributions consistent with the ga,1 = 3 s1-strategists in
the group is

Z3 = {(0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 0), (3, 0, 0, 0, 0, 0)} ,

consistent with the ga,2 = 2 s2-strategists in the group is

Z2 = {(0, 1, 0, 0, 0, 0), (2, 0, 0, 0, 0, 0)} ,
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consistent with the ga,3 = 0 s3-strategists in the group is

Z0 = {(0, 0, 0, 0, 0, 0)} ,

and consistent with the ga,4 = 1 s4-strategists in the group is

Z1 = {(1, 0, 0, 0, 0, 0)} .

The set of all possible strategywise family-size distributions consistent with strategy (3, 2, 0, 1)
is the Cartesian product of each strategy’s possible family-size distributions

Z(3,2,0,1) = Z3 ×Z2 ×Z0 ×Z1,

=

{(
(0, 0, 1, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)

)
,(

(0, 0, 1, 0, 0, 0), (2, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)
)
,(

(1, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)
)
,(

(1, 1, 0, 0, 0, 0), (2, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)
)
,(

(3, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)
)
,(

(3, 0, 0, 0, 0, 0), (2, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)
)}

.

◁

Let Z be the random variable denoting the group’s strategywise family-size distribution,
which takes values z. We write Y := sum(Z) =

∑m
i=1Zi and y := sum(z) =

∑m
i=1 zi below.

Then

P[Ga = ga] =
∑

z∈Zga

P[Z = z],

=
∑

z∈Zga

P[Y = y] P[Z = z | Y = y],

=
∑

z∈Zga

Fy P[Z = z | Y = y], (A.29)

where the quantity Fy is calculated using the homophilic group-formation model and P[Z =
z | Y = y] remains to be specified.

Given the group family structure y, the number of ways to order strategies in z across
families is a count of the multiset permutations

C(z) =
n∏

j=1

(
∑m

i=1 zi,j)!∏m
i=1 zi,j!

, (A.30)

S9



and the probability of drawing the family strategies given a particular ordering is

A(z,p) =
m∏
i=1

p
∥zi∥
i , (A.31)

where ∥zi∥ counts the number of families in a group pursuing strategy si

∥zi∥ =
n∑

j=1

zi,j. (A.32)

Therefore
P[Ga = ga] =

∑
z∈Zga

Fsum(z) C(z) A(z,p). (A.33)

Substituting Eq. A.33 into Eq. A.22 gives Eq. 29 in the main text:

∆px ∝
∑
ga∈Ga

(
ga,x

n
π̂(ex, ga)− px

m∑
i=1

ga,i

n
π̂(ei, ga)

) ∑
z∈Zga

C(z) A(z,p) Fsum(z)

 . (A.34)

By taking a proper limit and a proper time scale, we obtain Eq. 30 in the main text:

ṗx =
∑
ga∈Ga

(
ga,x

n
π̂(ex, ga)− px

m∑
i=1

ga,i

n
π̂(ei, ga)

) ∑
z∈Zga

C(z) A(z,p) Fsum(z)

 . (A.35)

Example 4. In Example 3 above, take

z =
(
(1, 1, 0, 0, 0, 0), (2, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)

)
∈ Z(3,2,0,1)

as an example, which corresponds to the following strategywise family-size distribution:

s1 s1 s1 s2 s2 s4

For this z, we have

C(z) =
(1 + 2 + 0 + 1)!

1! 2! 0! 1!︸ ︷︷ ︸
j=1

· (1 + 0 + 0 + 0)!

1! 0! 0! 0!︸ ︷︷ ︸
j=2

= 12

and
A(z,p) = p1+1

1 p22 p
0
3 p

1
4 = p21 p

2
2 p4.

Since
y = sum(z) = (4, 1, 0, 0, 0, 0),

it follows that
C(z) A(z,p) Fsum(z) = 12p21 p

2
2 p4 F(4,1,0,0,0,0).

◁
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B Relationships between relatedness coefficients and group family-partition prob-
abilities

Our homophilic group-formation models parameterise the evolutionary dynamics in terms
of group family partition-structure probabilities Fq; however, kin-selection models have tra-
ditionally been parameterised using relatedness coefficients like dyadic relatedness r2. In this
Supplement, we provide a method of converting between partition-structure probabilities and
relatedness coefficients. Relatedness coefficients may provide a more biologically intuitive pa-
rameterisation in keeping with the traditional approach, and can reduce the number of param-
eters needed to describe the evolutionary dynamics if a game can be decomposed into a sum of
smaller-group-size games (details in next Supplement C).

In the main text, we showed that for games of arbitrary degree, relatedness coefficients up to
r2 and r3 are sufficient to parameterise the strategy dynamics for group sizes n = 2 and n = 3,
respectively. However, for n ≥ 4, coefficients up to rn are no longer sufficient to parameterise
the dynamics. The purpose of this Supplement is to generalise the concept of the relatedness
coefficient to rρ (e.g., r[2,2] for n = 4 below), where ρ is a multiset, which allows us to include
additional relatedness coefficients to parameterise for large n.

B.1 How to calculate rρ given the family partition structure probabilities Fq

We generalise the concept of the relatedness coefficient from rk to rρ, where ρ =
[
ρ1, ρ2, . . . , ρ|ρ|

]
is a multiset that describes a way of sampling without replacement members from a group into
sets of size ρi. Here, with some abuse of notation, |ρ| represents the number of components in
multiset ρ. In particular, ρ specifies that we sample ρ1 group members and place them in one
set, ρ2 group members and place them in a second set, and so on for |ρ| sets. We will call the
outcome of drawing a sample according to ρ an outcome that ‘satisfies ρ’ if, for every sampled
set, all individuals within that set are family members. The relatedness coefficient rρ is the
probability that a randomly drawn group sampled according to ρ will satisfy ρ. For example,
r[2,2] represents the probability that, when we sample without replacement 2 + 2 = 4 members
from a randomly drawn group from the population, 1st and 2nd members belong to the same
family and 3rd and 4th members belong to the same family. Note that those two families can
be either the same family or different families.

Given the family partition structure probabilities {Fq}, where each q is a multiset (see
Table 1 in the main text), rρ can be calculated as follows. The first step is to identify all possible
ways to allocate sets structured according to ρ into a group with family partition structure q
such that the allocation satisfies ρ. Recall that q =

[
q1, q2, . . . , q|q|

]
is the family partition

structure of the group, which specifies that q1 group members are members of one family, q2
group members are members of a second family, and so on for all |q| family partitions, and q

satisfies
∑|q|

j=1 qj = n. Let α =
(
α1, α2, . . . , α|q|

)
be an allocation of sets structured according

to ρ into q that satisfies ρ, where each element αj is the set of indices i of ρ that have been
allocated to partition qj (see Example 5 below). It is possible for more than one set to be
allocated to the same family partition. All partitions must be large enough to contain the sets
allocated to it. Therefore, the set of all possible allocations that satisfy ρ is

Aρ,q =

α

∣∣∣∣∣∣
∑
i∈αj

ρi ≤ qj ∀j

 . (B.1)

If a group with family partition structure q is sampled according to ρ, then the probability
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that the allocation outcome a will be equal to a particular allocation α ∈ Aρ,q is

P[a = α | ρ, q] =

(
n−

∑|ρ|
k=1 ρk

)
!

n!

|q|∏
j=1

qj!(
qj −

∑
i∈αj

ρi

)
!
. (B.2)

The first term represents the decreasing number of individuals remaining in the group as the
sampling without replacement progresses. The second term represents the decreasing number of
individuals remaining in partition qj as the individuals allocated to qj are sampled. Therefore,
the probability that a set sampled according ρ from a group with family partition structure q
satisfies ρ is

rρ,q := P[a ∈ Aρ,q | ρ, q] =
∑

α∈Aρ,q

P[a = α | ρ, q]. (B.3)

Example 5. Calculate the probability rρ,q that a sample according to ρ = [3, 2, 2] drawn from
a group with family partition structure q = [5, 3, 1] will satisfy ρ.

We illustrate the group with q = [5, 3, 1] below, where the boxes separate the families and
shared family membership is indicated by colours

q1 q2 q3

We illustrate our sampled sets ρi by three shapes:

ρ1 ρ1 ρ1 ρ2 ρ2 ρ3 ρ3

In order to satisfy ρ, individuals in the sampled sets must share the same family membership.
There are three possible allocations that satisfy ρ, which are illustrated

q1 q2 q3

ρ1 ρ1 ρ1 ρ2 ρ2 ρ3 ρ3

ρ1 ρ1 ρ1 ρ3 ρ3 ρ2 ρ2

ρ2 ρ2 ρ3 ρ3 ρ1 ρ1 ρ1

The allocations that satisfy ρ are written

Aρ,q = {α1,α2,α3} ,

where

α1 = ({1, 2}, {3}, {}),
α2 = ({1, 3}, {2}, {}),
α3 = ({2, 3}, {1}, {}).

S12



The probability of drawing α1 is (Eq. B.2)

P[a = α1 | ρ, q] =
(9− 7)!

9!
· 5!

(5− 3− 2)!
· 3!

(3− 2)!
· 1!
1!

=
5

9
· 4
8
· 3
7︸ ︷︷ ︸

ρ1→q1

· 2
6
· 1
5︸ ︷︷ ︸

ρ2→q1

· 3
4
· 2
3︸ ︷︷ ︸

ρ3→q2

=
1

252
,

where the expanded form has been annotated to indicate which components of the equation
refer to which allocations. In this example, the probability of drawing α2 and α3 is also 1

252
.

Thus, the total probability is the sum of allocation probabilities

rρ,q =
1

252
+

1

252
+

1

252
=

1

84
,

which corresponds to Eq. B.3. ◁

In a given population, the probability that a randomly sampled group will have partition
structure q is Fq. Therefore, the probability that a randomly drawn group sampled according
to ρ will satisfy ρ is

rρ =
∑
q⊢n

rρ,qFq, (B.4)

where the sum over q ⊢ n is the sum over q that are integer partitions of n.

B.2 Our proposal for how to choose the relatedness-coefficient parameterisation
For a given n, there are more rρ coefficients than are needed to describe the dynamics.

Therefore, in this subsection, we propose a scheme for choosing which rρ to include in the
parameterisation.

We typically need Pn−1 coefficients to obtain dynamical sufficiency, where Pn is the partition
function number counting the total number of possible integer partitions of the group size n.
The reason why we need Pn − 1 is because there are Pn partition-structure probabilities Fqk

,
but also

∑Pn

k=1 Fqk
= 1; therefore, only Pn−1 partition probabilities Fqk

are needed. Therefore,
if we are parameterising instead using rρ, we expect we will need Pn − 1 coefficients (see proof
below). However, there are

∑n
k=1 Pk relatedness coefficients to choose from.

For any relatedness coefficient rρ with ρ ∈ ρ such that ρ = 1, that size-1 set counts the
probability that an individual is always in the same family as itself, which is always simply 1.
Intuitively, these sets seem redundant. Therefore, we propose that such coefficients should be
excluded, and models should be parameterised only with the set of relatedness coefficients that
do not concern size-1 sets, i.e.,

Rn = {rρ |ρ ⊢ k, 2 ≤ k ≤ n, ρi > 1 ∀i} , (B.5)

where ρ ⊢ k means that multiset ρ is a partition of integer k. In words, rρ ∈ Rn is a relatedness
coefficient based on multiset ρ which is a partition of some k (2 ≤ k ≤ n) and which does not
contain 1 in its element. We can verify that the size of this set is |Rn| = Pn − 1 as needed. Let
Ek be the number of partitions of k that contain at least one element equal to 1. For group
sizes 1 and 2, we have: P1 = 1, E1 = 1, |R1| = 0; and P2 = 2, E2 = 1, |R2| = 1. In general,
for n ≥ 2, |Rn| =

∑n
k=2(Pk − Ek). The partitions of k that contain at least one element equal

to 1 are obtained by adding the element 1 to each partition of k − 1; therefore, Ek = Pk−1.
Therefore, |Rn| =

∑n
k=2(Pk − Pk−1) = Pn − P1 = Pn − 1.
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Example 6. For n = 6, Pn − 1 = 10, the set of relatedness coefficients we suggest to parame-
terise the model is

Rn =
{
r[2], r[3], r[2,2], r[4], r[3,2], r[5], r[4,2], r[3,3], r[2,2,2], r[6]

}
, ◁

which are all the relatedness coefficients except those that involve sampling a set of size 1.

Rn in Eq. B.5 is equivalent to

Rn = {rρ |ρ = [q ∈ q | q ̸= 1] , ρ ̸= ∅, ∀q ⊢ n} . (B.6)

The multiset ρ = [q ∈ q | q ̸= 1] is only empty for one partition of n, which is q = [1, 1, . . . , 1];
therefore, again, the size of the set of relatedness coefficients |Rn| = Pn − 1.

Example 7. If q = [4, 3, 3, 1, 1], its corresponding ρ in Eq. B.6 is that same multiset with all
the ones removed, i.e., ρ = [4, 3, 3]. ◁

In particular, {Rn} is an increasing sequence of sets, as R2 ⊊ R3 ⊊ R4 ⊊ · · · . One benefit
of choosing relatedness coefficients according to Eq. B.5 is that, if the extent of nonlinearity
of the game is low, then the subset of Rn needed to to describe the dynamics can be easily
identified. For 2-strategy games, Ohtsuki (2014) wrote the payoffs to a focal A- and B-strategist
as polynomial functions of the number k of A-strategists among the n−1 other players and de-
fined the degree of the game as the maximum degree of the polynomials. Ohtsuki (2014) proved
that dynamical sufficiency of an n-player game of degree d can be obtained with relatedness
coefficients up to d+1, i.e., Rd+1. For games with more than 2 strategies, we hypothesise that
analogous subsets can be identified (SI C).

Example 8. For a 6-player, 2-strategy game with degree d = 4, only relatedness coefficients
up to d + 1 = 5 are needed to describe the dynamics: R5 =

{
r[2], r[3], r[2,2], r[4], r[3,2], r[5]

}
. The

elements in R6 \ R5 =
{
r[4,2], r[3,3], r[2,2,2], r[6]

}
are not needed. ◁

B.2.1 Proof that Rn is sufficient to describe the dynamics
To prove that the set of parameters Rn defined in Eq. B.6 is sufficient to describe the

dynamics, we will show that it has a 1-to-1 relationship with Pn − 1 of the probabilities Fq.
To show this, we first specify vectors with particular ordering for the elements of Rn and for
corresponding Fq probabilities, and then we describe the relationship between the two vectors
by a matrix M . We then prove that M is upper triangular, which implies that it is an invertible
matrix and therefore the relationship is 1-to-1.

Let ρ⃗ denote a particular ordering of sampling schemes ρ, and let ρ⃗(i) denote the i-
th sampling scheme in that ordering. Define r⃗ as the vector of all relatedness coefficients
rρ ∈ Rn such that their order in the vector r⃗ corresponds to the ordering of ρ⃗; that is,
r⃗ =

(
rρ⃗(1)

, rρ⃗(2)
, . . . , rρ⃗(Pn−1)

)
.
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Let q⃗ denote a particular ordering of family partition structures q, and let q⃗(i) denote
the i-th partition structure in that ordering. Denote the set of all family partition-structure
probabilities apart from the structure where no group members are from the same family by

Fn = {Fq | q ⊢ n, q ̸= [1, 1, . . . , 1]} .

Fn has size |Fn| = Pn − 1. Define F⃗ as the vector of all partition-structure probabilities
Fq ∈ Fn such that their order in the vector F⃗ corresponds to the ordering of q⃗; that is,
F⃗ =

(
Fq⃗(1)

, . . . , Fq⃗(Pn−1)

)
.

Denote the size of the multiset ρ⃗(i) by |ρ⃗(i)|, and denote the sum of its elements by

∥ρ⃗(i)∥ =

|ρ⃗(i)|∑
k=1

(ρ⃗(i))k.

We can now specify an ordering of r⃗ and F⃗ by specifying an ordering of ρ⃗ and q⃗. We specify
that ρ⃗ and q⃗ must satisfy the following three conditions.

Condition 1: q⃗(i) = ρ⃗(i) ∪ [1, 1, . . . , 1]︸ ︷︷ ︸
n−∥ρ⃗(i)∥

(B.7)

where ∪ is a multiset union. Condition 1 reflects the correspondence described in Eq. B.6
between the relatedness coefficients we have chosen and Pn−1 of the family partition structures.
Condition 1 means that the ordering of q⃗ is defined by the ordering of ρ⃗; therefore, the next
two conditions specify constraints on the ordering of ρ⃗ only.

Condition 2: ∥ρ⃗(i)∥ < ∥ρ⃗(j)∥ =⇒ i < j (B.8)

which means that ρ with smaller sums come earlier in the indexing.

Condition 3: if ∥ρ⃗(i)∥ = ∥ρ⃗(j)∥, then |ρ⃗(i)| > |ρ⃗(j)| =⇒ i < j. (B.9)

which means that, within sequences of ρ whose sums are equal, the ρ with greater length come
earlier in the indexing.

Example 9. For n = 5, we have P5 − 1 = 7− 1 = 6, and R5 and F5 are

R5 =
{
r[2], r[3], r[2,2], r[4], r[3,2], r[5]

}
,

F5 =
{
F[5], F[4,1], F[3,2], F[3,1,1], F[2,2,1], F[2,1,1,1]

}
.

The ordering satisfying Conditions 1-3 above is unique, and it is

ρ⃗ = ( [2] , [3] , [2, 2] , [4] , [3, 2] , [5]),

q⃗ = ( [2, 1, 1, 1] , [3, 1, 1] , [2, 2, 1] , [4, 1] , [3, 2] , [5]),

so we have
r⃗ = (r[2], r[3], r[2,2], r[4], r[3,2], r[5]),

F⃗ = (F[2,1,1,1],F[3,1,1],F[2,2,1],F[4,1],F[3,2],F[5]).
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That is, for r⃗, a multiset with a smaller sum comes first, and a larger-sized multiset comes first
if sums are equal, and to obtain F⃗ , fill the corresponding multiset in r⃗ with 1’s to make the
sum equal to n.

In contrast, for n = 6, the ordering satisfying Conditions 1-3 is not unique, and both

r⃗ = (r[2], r[3], r[2,2], r[4], r[3,2], r[5], r[2,2,2], r[4,2], r[3,3], r[6]),

F⃗ = (F[2,1,1,1,1],F[3,1,1,1],F[2,2,1,1],F[4,1,1],F[3,2,1],F[5,1],F[2,2,2],F[4,2],F[3,3],F[6]),

and
r⃗ = (r[2], r[3], r[2,2], r[4], r[3,2], r[5], r[2,2,2], r[3,3], r[4,2], r[6]),

F⃗ = (F[2,1,1,1,1],F[3,1,1,1],F[2,2,1,1],F[4,1,1],F[3,2,1],F[5,1],F[2,2,2],F[3,3],F[4,2],F[6]),

satisfy the required criteria. Specifically, multisets [3, 3] and [4, 2] have the same sum and the
same size, so either can come first. ◁

To prove that the mapping from Rn to Fn is 1-to-1, we show that the matrix M that
describes the relationship r⃗ = M F⃗ has all non-zero elements on the diagonal and all zero
elements below the diagonal. Examples of the M matrices up to size n = 6, from which one
may directly observe that the matrices are upper-triangular, are given in the next subsection
(Section B.3).

Here we provide a proof. The element mi,j of M is the probability rρ⃗(i),q⃗(j)
(Eq. B.4). From

Eq. B.2 and Eq. B.3, mi,j = 0 if and only if Aρ⃗(i),q⃗(j)
= ∅.

First, let us first consider the diagonal elements mi,i of M . From Condition 1, we know that
q⃗(i) = ρ⃗(i) ∪ [1, 1, . . . , 1], so there is at least one allocation of q⃗(i) into ρ⃗(i) that satisfies ρ⃗(i),
namely α =

(
{1}, {2}, . . . , {|ρ⃗(i)|}

)
. Therefore, Aρ⃗(i),q⃗(i)

̸= ∅, and therefore mi,i ̸= 0.
Second, let us consider lower-triangular region of mi,j where i > j. Taking the contrapositive

of Condition 2, there are three possible cases:

1. ∥ρ⃗(i)∥ > ∥ρ⃗(j)∥: It is not possible to sample more individuals than there are available,
therefore Aρ⃗(i),q⃗(j)

= ∅ and therefore mi,j = 0.

2. ∥ρ⃗(i)∥ = ∥ρ⃗(j)∥ and |ρ⃗(i)| < |ρ⃗(j)|: At least one set in ρ⃗(i) must be split between multiple
family partitions in q⃗(j), therefore Aρ⃗(i),q⃗(j)

= ∅ and therefore mi,j = 0.

3. ∥ρ⃗(i)∥ = ∥ρ⃗(j)∥ and |ρ⃗(i)| = |ρ⃗(j)|: In this case, Aρ⃗(i),q⃗(j)
̸= ∅ if and only if ρ⃗(i) = ρ⃗(j). But

each element of ρ⃗ is unique and i ̸= j and therefore ρ⃗(i) ̸= ρ⃗(j). Therefore Aρ⃗(i),q⃗(j)
= ∅

and therefore mi,j = 0.

In all cases when i > j, mi,j = 0. This ends the proof.

Example 10. Let us consider n = 6, and let us consider the following ordering

ρ⃗ = ( [2] , [3] , [2, 2] , [4] , [3, 2] , [5] , [2, 2, 2] , [4, 2] , [3, 3] , [6]),

q⃗ = ( [2, 1, 1, 1, 1] , [3, 1, 1, 1] , [2, 2, 1, 1] , [4, 1, 1] , [3, 2, 1] , [5, 1] , [2, 2, 2] , [4, 2] , [3, 3] , [6]),

and
r⃗ = (r[2], r[3], r[2,2], r[4], r[3,2], r[5], r[2,2,2], r[4,2], r[3,3], r[6]),

F⃗ = (F[2,1,1,1,1],F[3,1,1,1],F[2,2,1,1],F[4,1,1],F[3,2,1],F[5,1],F[2,2,2],F[4,2],F[3,3],F[6]).
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The first part of the proof above says m5,5 ̸= 0, for example, because sampling scheme
ρ⃗(5) = [3, 2] (i.e, taking 3 individuals first, and then 2 individuals second) can be compatible
with family partition structure q⃗(5) = [3, 2, 1] (i.e. if the first 3 individuals are taken from the
family of size 3 in [3, 2, 1] and second 2 individuals are taken from the family of size 2 in [3, 2, 1],
then the first 3 individuals belong to one family and the second 2 individuals belong to another
family).

For the second part of the proof, case 1 above says m5,4 = 0, for example, because sampling
scheme ρ⃗(5) = [3, 2] can never be compatible with family partition structure q⃗(4) = [4, 1, 1]. The
reason for this is because 3 + 2 > 4 and therefore it is impossible that the first 3 individuals
belong to one family and at the same time the second 2 individuals belong to another family
under q⃗(4).

Case 2 above says m6,5 = 0, for example, because sampling scheme ρ⃗(6) = [5] can never
be compatible with family partition structure q⃗(5) = [3, 2, 1]. The reason for this is because
ρ⃗(6) = [5] is a smaller-sized partition of 5 than ρ⃗(5) = [3, 2] is and therefore it is impossible that
5 individuals belong to the same family under q⃗(5).

Case 3 above says m9,8 = 0, for example, because sampling scheme ρ⃗(9) = [3, 3] can never
be compatible with family partition structure q⃗(8) = [4, 2]. The reason for this is because both
ρ⃗(9) = [3, 3] and ρ⃗(8) = [4, 2] are partitions of 6 and their sizes are the same (=2) but they
are different partitions, and therefore it is impossible that the first 3 individuals belong to one
family and at the same time the second 3 individuals belong to another family under q⃗(8). ◁

B.3 Coefficients for converting between rρ and Fq up to n = 6

Code to calculate the coefficients needed to convert between rρ and Fq can be found in the
Github repository: scripts/related2partprob/calc_matrices.py. In this subsection, we
tabulate the coefficients up to n = 6 and illustrate their use.

In the main text, for n = 3, we calculated

r[2] =
F[2,1]

3
+ F[3],

r[3] = F[3], (B.10)

which gives

F[2,1] = 3(r[2] − r[3]),

F[3] = r[3]. (B.11)

(In this case, F[1,1,1] = 1 − 3r[2] + 2r[3]). Tables B.1 and B.2 present the coefficients computed
for converting from Fq to rρ and visa versa, respectively, which correspond to the coefficients
in the equations presented in the main text.

Table B.1: Coefficients to convert from family partition probabilities to relatedness coefficients for n = 3.

factor F[2,1] F[3]

r[2] 1/6 2 6
r[3] 1/6 0 6

S17

https://github.com/nadiahpk/homophilic-many-strategy-PGG/


Table B.2: Coefficients to convert from relatedness coefficients to family partition probabilities for n = 3.

factor r[2] r[3]

F[2,1] 3 1 -1
F[3] 1 0 1

Table B.3: Coefficients to convert from family partition probabilities to relatedness coefficients for n = 4.

factor F[2,1,1] F[3,1] F[2,2] F[4]

r[2] 1/12 2 6 4 12
r[3] 1/24 0 6 0 24
r[2,2] 1/24 0 0 8 24
r[4] 1/24 0 0 0 24

For n = 4, we computed the coefficients presented in Tables B.3 and B.4.
The coefficients in Table B.3 give relationships

r[2] =
F[2,1,1]

6
+

F[3,1]

2
+

F[2,2]

3
+ F[4],

r[3] =
F[3,1]

4
+ F[4],

r[2,2] =
F[2,2]

3
+ F[4],

r[4] = F[4]. (B.12)

Table B.4: Coefficients to convert from relatedness coefficients to family partition probabilities for n = 4.

factor r[2] r[3] r[2,2] r[4]

F[2,1,1] 6 1 -2 -1 2
F[3,1] 4 0 1 0 -1
F[2,2] 3 0 0 1 -1
F[4] 1 0 0 0 1

The coefficients in Table B.4 give relationships

F[2,1,1] = 6
(
r[2] − 2r[3] − r[2,2] + 2r[4]

)
,

F[3,1] = 4
(
r[3] − r[4]

)
,

F[2,2] = 3
(
r[2,2] − r[4]

)
,

F[4] = r[4]. (B.13)

Coefficients for n = 5 and n = 6 are presented in Tables B.5 to B.8. Relationships between
rρ and Fq can derived in an analogous way to the examples above for n = 3 and n = 4.
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Table B.5: Coefficients to convert from family partition probabilities to relatedness coefficients for n = 5.

factor F[2,1,1,1] F[3,1,1] F[2,2,1] F[4,1] F[3,2] F[5]

r[2] 1/20 2 6 4 12 8 20
r[3] 1/60 0 6 0 24 6 60
r[2,2] 1/120 0 0 8 24 24 120
r[4] 1/120 0 0 0 24 0 120
r[3,2] 1/120 0 0 0 0 12 120
r[5] 1/120 0 0 0 0 0 120

Table B.6: Coefficients to convert from relatedness coefficients to family partition probabilities for n = 5.

factor r[2] r[3] r[2,2] r[4] r[3,2] r[5]

F[2,1,1,1] 10 1 -3 -3 6 5 -6
F[3,1,1] 10 0 1 0 -2 -1 2
F[2,2,1] 15 0 0 1 -1 -2 2
F[4,1] 5 0 0 0 1 0 -1
F[3,2] 10 0 0 0 0 1 -1
F[5] 1 0 0 0 0 0 1

Table B.7: Coefficients to convert from family partition probabilities to relatedness coefficients for n = 6.

factor F[2,1,1,1,1] F[3,1,1,1] F[2,2,1,1] F[4,1,1] F[3,2,1] F[5,1] F[2,2,2] F[4,2] F[3,3] F[6]

r[2] 1/30 2 6 4 12 8 20 6 14 12 30
r[3] 1/120 0 6 0 24 6 60 0 24 12 120
r[2,2] 1/360 0 0 8 24 24 120 24 72 72 360
r[4] 1/360 0 0 0 24 0 120 0 24 0 360
r[3,2] 1/720 0 0 0 0 12 120 0 48 72 720
r[5] 1/720 0 0 0 0 0 120 0 0 0 720
r[2,2,2] 1/720 0 0 0 0 0 0 48 144 0 720
r[4,2] 1/720 0 0 0 0 0 0 0 48 0 720
r[3,3] 1/720 0 0 0 0 0 0 0 0 72 720
r[6] 1/720 0 0 0 0 0 0 0 0 0 720

Table B.8: Coefficients to convert from relatedness coefficients to family partition probabilities for n = 6.

factor r[2] r[3] r[2,2] r[4] r[3,2] r[5] r[2,2,2] r[4,2] r[3,3] r[6]

F[2,1,1,1,1] 15 1 -4 -6 12 20 -24 3 -18 -8 24
F[3,1,1,1] 20 0 1 0 -3 -3 6 0 3 2 -6
F[2,2,1,1] 45 0 0 1 -1 -4 4 -1 5 2 -6
F[4,1,1] 15 0 0 0 1 0 -2 0 -1 0 2
F[3,2,1] 60 0 0 0 0 1 -1 0 -1 -1 2
F[5,1] 6 0 0 0 0 0 1 0 0 0 -1
F[2,2,2] 15 0 0 0 0 0 0 1 -3 0 2
F[4,2] 15 0 0 0 0 0 0 0 1 0 -1
F[3,3] 10 0 0 0 0 0 0 0 0 1 -1
F[6] 1 0 0 0 0 0 0 0 0 0 1
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C Game degree determines the maximum relatedness order needed to parame-
terise the model

In previous work on n-player 2-strategy (strategies A and B) group games, Ohtsuki (2014)
defined the degree of a game d as the maximum order of polynomial needed to write the payoffs
to a focal player as a function of the number k of A-strategists among the n−1 nonfocal players.
Ohtsuki (2014) proved that, if a game has degree d, then dynamical sufficiency can be obtained
using only relatedness coefficients up to order d+ 1. For example, the payoffs in a linear PGG
can be written as polynomials of degree d = 1, and a linear PGG can be parameterised with
only one relatedness coefficient, r2, regardless of how large the group is.

In this Supplement, we sketch a generalisation of this principle to m-strategy games using
worked examples. The core concept is that, if an n-player game has degree d (< n − 1), then
the n-player payoffs can be written as a sum of (d + 1)-player payoffs, and only relatedness
coefficients up to order (d+ 1), by which we mean relatedness coefficients that appear in Rd+1

(see Eq. B.6), are needed to describe the dynamics.

C.1 Overview
In a game with n players and m strategies, there are T = (n+m−2)!

(n−1)!(m−1)!
possible nonfocal

strategy distributions, and therefore there are up to T possible unique payoffs that a focal sx
strategist may receive. Therefore, in general and for arbitrary payoffs, the payoff function can
be written as a polynomial of degree n− 1 with T coefficients

πn

(
ex,

(
gnf,1, gnf,2, . . . , n− 1−

m−1∑
i=1

gnf,i

))
= c1 + c2gnf,1 + c3gnf,2 + . . .+ cmgnf,m−1 + cmg

2
nf,1 + cm+1gnf,1gnf,2 + . . .+ cTg

n−1
nf,m−1, (C.1)

where the subscript n on πn emphasises that this is the payoff for an n-player game.
We observe that, if the maximum degree across focal strategies of the polynomial πn is

d (< n − 1) (we propose to call this d “degree of the game” in analogy with Ohtsuki (2014)),
then the full game payoff can be written as an aggregation of games with d+ 1 players

πn(ex, gnf) =
∑

γnf∈Γgnf

πd+1(ex,γnf), (C.2)

where Γgnf
is the set of all d-player nonfocal strategy compositions that can be obtained by

selecting d out of n−1 individuals from the full nonfocal strategy composition gnf. Specifically,

Γgnf
=

{
γnf ∈ Nm

≥0

∣∣∣∣∣γnf =
∑
j∈J

gj, gnf =
n−1∑
j=1

gj, J ∈ Sd({1, . . . , n− 1})

}
, (C.3)

where gj are the strategy indicator functions for individual j indexed in arbitrary order, and
Sd(A) is the set of all d-sized subsets of the set A. The size of the set is |Γgnf

| =
(
n−1
d

)
.

Given that the game can be reinterpreted as an aggregation of d + 1 player games, then it
is obvious that the evolutionary dynamics can be described with relatedness coefficients up to
order (d+ 1), i.e., Rd+1 in Eq. B.6.

S20



C.2 Examples
C.2.1 A three-player game that is a sum of two-player games

It is known that any n-player linear public goods game with two strategies, cooperate
and defect, can be parameterised with the dyadic relatedness coefficient r[2] alone. In this
subsection, we detail an example where a three-player can be written as a sum of 2-player
games and therefore parameterised with r[2] alone.

Consider a 3-player linear public goods game with contribution cost c and maximum benefit
b = 1. Let s1 be Cooperators and s2 be Defectors. The payoffs to Cooperators are

π3(e1, 2e1) = 1− c, π3(e1, e1 + e2) = 2/3− c, π3(e1, 2e2) = 1/3− c,

and the payoffs to Defectors are

π3(e2, 2e1) = 2/3, π3(e2, e1 + e2) = 1/3, π3(e2, 2e2) = 0.

Both payoff functions can be written as polynomials of degree d = 1. For Cooperators

π3(e1, (gnf,1, 2− gnf,1)) =
1

3
− c+

gnf,1

3
,

and for Defectors
π3(e2, (gnf,1, 2− gnf,1)) =

gnf,1

3
.

The degree of the game, d, is the largest order of those two polynomials above, and therefore
d = 1. We find that the three-player games above can also be written as the sum of 2 two-player
games. For both Cooperators and Defectors, we can write

π3(ex, 2e1) = 2π2(ex, e1),

π3(ex, e1 + e2) = π2(ex, e1) + π2(e1, e2),

π3(ex, 2e2) = 2π2(ex, e2),

where both π2 are polynomials of degree 1. For Cooperators

π2(e1, (gnf,1, 1− gnf,1)) =
1

6
− c

2
+

gnf,1

3
,

and for Defectors
π2(e2, (gnf,1, 1− gnf,1)) =

gnf,1

3
.

C.2.2 A four-player game that is a sum of three-player games
In this subsection, we detail an example of a 4-player game whose payoffs can be expressed

as polynomials of degree d = 2 and as an aggregation of 3-player games. Therefore, this
4-player game’s dynamics can be parameterised using only relatedness coefficients in the set
R3 = {r[2], r[3]}.

We consider a game with m = 3 strategies played between n = 4 players. In general, the
payoff function is a polynomial of degree d = 3 with 10 coefficients

π4

(
ex, (gnf,1, gnf,2, 3− gnf,1 − gnf,2)

)
= c1 + c2gnf,1 + c3gnf,2 + c4g

2
nf,1 + c5gnf,1gnf,2 + c6g

2
nf,2

+ c7g
3
nf,1 + c8g

2
nf,1gnf,2 + c9gnf,1g

2
nf,2 + c10g

3
nf,2. (C.4)
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Here, we consider a special case where the payoff function is a polynomial of degree d = 2.
We consider the payoff function with 6 coefficients

π4

(
ex, (gnf,1, gnf,2, 3− gnf,1 − gnf,2)

)
= 9− 3gnf,1 + 3gnf,2 + 3g2nf,1 + 4gnf,1gnf,2 + 5g2nf,2, (C.5)

where these coefficients have been chosen arbitrarily but to produce integer payoffs. We believe
the 4-player payoffs can be written as

π4(ex, gnf) =
∑

γnf∈Γgnf

π3(ex,γnf),

and we wish to determine the value of each π3(ex,γnf).
Table C.9 lists all possible nonfocal distributions gnf in the four-player game and the payoffs

π4 to the focal sx strategist calculated according to Eq. C.5. For each four-player nonfocal
distribution, three corresponding three-player nonfocal distributions γnf are identified according
to Eq. C.3. The relationship between three- and four-player game payoffs is written as an
equation in the final column.

Table C.9: A list of all four-player games and the corresponding aggregation of three-player games.

four-player game 3 three-player games
# gnf π4(ex, gnf) γnf γnf γnf equation relating 3- and 4-player payoffs
1 (3, 0, 0) 27 (2, 0, 0) (2, 0, 0) (2, 0, 0) π4 = 3π3(ex, (2, 0, 0))
2 (0, 3, 0) 63 (0, 2, 0) (0, 2, 0) (0, 2, 0) π4 = 3π3(ex, (0, 2, 0))
3 (0, 0, 3) 9 (0, 0, 2) (0, 0, 2) (0, 0, 2) π4 = 3π3(ex, (0, 0, 2))
4 (2, 1, 0) 31 (2, 0, 0) (1, 1, 0) (1, 1, 0) π4 = π3(ex, (2, 0, 0)) + 2π3(ex, (1, 1, 0))
5 (2, 0, 1) 15 (2, 0, 0) (1, 0, 1) (1, 0, 1) π4 = π3(ex, (2, 0, 0)) + 2π3(ex, (1, 0, 1))
6 (1, 2, 0) 43 (0, 2, 0) (1, 1, 0) (1, 1, 0) π4 = π3(ex, (0, 2, 0)) + 2π3(ex, (1, 1, 0))
7 (0, 2, 1) 35 (0, 2, 0) (0, 1, 1) (0, 1, 1) π4 = π3(ex, (0, 2, 0)) + 2π3(ex, (0, 1, 1))
8 (1, 0, 2) 9 (0, 0, 2) (1, 0, 1) (1, 0, 1) π4 = π3(ex, (0, 0, 2)) + 2π3(ex, (1, 0, 1))
9 (0, 1, 2) 17 (0, 0, 2) (0, 1, 1) (0, 1, 1) π4 = π3(ex, (0, 0, 2)) + 2π3(ex, (0, 1, 1))
10 (1, 1, 1) 21 (1, 1, 0) (1, 0, 1) (0, 1, 1) π4 = π3(ex, (1, 1, 0)) + π3(ex, (1, 0, 1)) + π3(ex, (0, 0, 1))

To rewrite the four-player game as an aggregation of three-player games, we must solve for
the three-player payoffs. For scenarios where the two nonfocals pursue the same strategy, the
three-player payoffs can be solved independently from Rows 1, 2, and 3 of Table C.9

π3(ex, (2, 0, 0)) =
π4(ex, (3, 0, 0))

3
= 9,

π3(ex, (0, 2, 0)) =
π4(ex, (0, 3, 0))

3
= 21,

π3(ex, (0, 0, 2)) =
π4(ex, (0, 0, 3))

3
= 3.

For scenarios where the two nonfocals pursue different strategies, we can choose 3 rows from
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Rows 4-9. For example, when we choose Rows 4, 5, and 7

π3(ex, (1, 1, 0)) =
π4(ex, (2, 1, 0))− π3(ex, (2, 0, 0))

2
= 11,

π3(ex, (1, 0, 1)) =
π4(ex, (2, 0, 1))− π3(ex, (2, 0, 0))

2
= 3,

π3(ex, (0, 1, 1)) =
π4(ex, (0, 2, 1))− π3(ex, (0, 2, 0))

2
= 7.

We can verify that the π3 solutions above are consistent with the other rows. For example,
Row 10 asserts

π4(ex, (1, 1, 1)) = π3(ex, (1, 1, 0)) + π3(ex, (1, 0, 1)) + π3(ex, (0, 0, 1)) = 11 + 3 + 7 = 21,

which is correct.
In general, if π4 is degree d = 2 (i.e. c7 = c8 = c9 = c10 = 0 in Eq. C.4), then the polynomial

describing payoffs in three-player games is shown to be

π3(ex,γnf) =
c1
3
+

c2 − c4
2

γnf,1 +
c3 − c6

2
γnf,2 + c4γ

2
nf,1 + c5γnf,1γnf,2 + c6γ

2
nf,2.
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D How we implemented the other-member accounting: the transformed payoff
approach

In this supplement, we provide the general method for obtaining the transformed payoff
matrix (or payoff tensor), and we describe how to test stability and determine invasion fitness.

The methods described here are implemented in the TransmatBase class in the code reposi-
tory functions/transmat_base.py. Examples of their analytic use in a small example can be
found in SI G, and helpful functions for performing symbolic operations in SymPy can be found
in the module functions/symbolic_transformed.py.

D.1 Background and small-n examples
When the relatedness coefficients are independent of strategy frequencies in the population,

as they are in our approach, then the dynamics under homophily are equivalent to the dynamics
in a well-mixed population of a transformed game, where the transformation modifies the payoffs
in a way that accounts for relatedness (Grafen, 1979). When the payoffs are expressed in a
matrix form, homophilic dynamics can be expressed in terms of operations on a transformed
payoff matrix (e.g., Van Veelen, 2011; García et al., 2014).

For example, consider a 2-player, m-strategy game in a well-mixed population. We can
construct a payoff matrix A such that each element ai,j is the payoff an i strategist receives
when matched with a j strategist

ai,j = π(ei, ej). (D.1)

Then the replicator dynamics can be written

ṗi = pi(πi − π) = pi((Ap)i − pTAp), (D.2)

where π = Ap is a vector of expected payoffs to each focal strategist, and π = pTAp is the
expected payoff in the population as a whole (Hofbauer and Sigmund, 1998). For example, we
can write out π = Ap in detail

π1
...
πi
...
πm

 =


a1,1 . . . a1,m
...

...
ai,1 . . . ai,m
...

...
am,1 . . . am,m




p1
...
pi
...
pm

 =


a1,1p1 + . . .+ a1,mpm

...
ai,1p1 + . . .+ ai,mpm

...
am,1p1 + . . .+ am,mpm

 . (D.3)

Now consider a situation with genetic homophily, with dyadic relatedness r2. This means
that an i-strategist will be matched with an i-strategist with probability r2, and i-strategist
will be matched with a strategy randomly drawn from the population with probability 1 − r2
(see Eq. 16). Then we can create a transformed payoff matrix B

B = r2


a1,1 . . . a1,1
...

...
ai,i . . . ai,i
...

...
am,m . . . am,m

+ (1− r2)


a1,1 . . . a1,m
...

...
ai,1 . . . ai,m
...

...
am,1 . . . am,m

 , (D.4)

such that the evolutionary dynamics of a game with payoffs B played in a well-mixed population

ṗi = pi((Bp)i − pTBp), (D.5)
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are equivalent to the dynamics of game with payoffs A played in the homophilic population
with relatedness r2.

3-player game. In the main text, we found the transformed payoff function π′ for the
3-player m-strategy game that preserved the symmetry of the original π function and also
satisfied

πi =
m∑
j=1

m∑
k=1

pjpkπ
′(ei, ej, ek). (D.6)

The transformation was

π′(ei, ej, ek) = F[1,1,1]π(ei, ej + ek) + F[3]π(ei, 2ei)

+ F[2,1]

[
1

3

(
π(ei, 2ej) + π(ei, 2ek)

2

)
+

2

3

(
π(ei, ei + ej) + π(ei, ei + ek)

2

)]
. (D.7)

The transformed “payoff matrix” is not a matrix anymore, but it may be called “payoff tensor”
B, and it has size m3 with elements

bi,j,k = π′(ei, ej, ek), (D.8)

illustrated below (Fig. D.1).

Figure D.1: The 3-dimensional payoff tensor for the 3-player game. Each dimension corresponds to a player,
the strategy of the focal player is indicated by the first index, and m entries correspond to the m strategies.

Example 11. A 3-dimensional tensor B = {bi,j,k} is naturally identifiable with a function
B : Rm ⊗ Rm ⊗ Rm → R such that for x(1),x(2),x(3) ∈ Rm it returns a value,

B(x(1) ⊗ x(2) ⊗ x(3)) :=
m∑
i=1

m∑
j=1

m∑
k=1

x
(1)
i x

(2)
j x

(3)
k bi,j,k.

In what follows we will use the following short-hand notations,

Bip
⊗2 := B(ei ⊗ p⊗ p)

Bp⊗3 := B(p⊗ p⊗ p)
, (D.9)

where the first expression represents the average payoff of si-strategists in a well-mixed popu-
lation where game B is played, and the second expression is the average payoff in the whole
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population.
Similarly, for an n-player game, an n-dimensional tensor B = {bi1,...,in} defines a game,

where and it is identified with a function B : (Rm)⊗n → R such that for x(1), . . . ,x(n) ∈ Rm it
returns a value,

B(x(1) ⊗ · · · ⊗ x(n)) :=
m∑

i1=1

· · ·
m∑

in=1

x
(1)
i1

· · ·x(n)
in

bi1,...,in .

We will use the following short-hand notations,

Bip
⊗(n−1) := B(ei ⊗ p⊗ · · · ⊗ p︸ ︷︷ ︸

(n− 1) times

)

Bp⊗n := B(p⊗ p⊗ · · · ⊗ p︸ ︷︷ ︸
n times

).
(D.10)

Their meanings are similar to above. ◁

By using notations that are suggested in Example 11, the evolutionary dynamics can be
written analogous to the 2-dimensional case (Eq. D.5)

ṗi = pi

 Bip
⊗2︸ ︷︷ ︸

payoff of si

− Bp⊗3︸ ︷︷ ︸
population average

 . (D.11)

4-player game. For the 4-player m-strategy game, we seek the transformed payoff function
π′ that satisfies

πi =
m∑
j=1

m∑
k=1

m∑
l=1

pjpkplπ
′(ei, ej, ek, el), (D.12)

and that transformation is

π′(ei, ej, ek, el)

= F[1,1,1,1]π(ei, ej + ek + el)

+ F[2,1,1]

[
1

2

(
π(ei, ei + ej + ek) + π(ei, ei + ej + el) + π(ei, ei + ek + el)

3

)

+
1

2


π(ei, 2ej + ek) + π(ei, 2ej + el) + π(ei, 2ek + ej)

+ π(ei, 2ek + el) + π(ei, 2el + ej) + π(ei, 2el + ek)

6




+ F[3,1]

[
3

4

(
π(ei, 2ei + ej) + π(ei, 2ei + ek) + π(ei, 2ei + el)

3

)
+
1

4

(
π(ei, 3ej) + π(ei, 3ek) + π(ei, 3el)

3

)]
+ F[2,2]

[
π(ei, ei + 2ej) + π(ei, ei + 2ek) + π(ei, ei + 2el)

3

]
+ F[4]π(ei, 3ei). (D.13)
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The transformed payoff tensor B has size m4 with elements

bi,j,k,l = π′(ei, ej, ek, el). (D.14)

D.2 General n-player solution
In general, the payoffs in a well-mixed population can be stored in an n-dimensional m ×

· · ·×m tensor A where each dimension corresponds to an individual in the group and the index
is the strategy it plays. We organise A so that the leading index refers to the focal player. The
elements au of A are indexed by a vector u = (u0, . . . , un−1) of length n (group size) where u0

is the strategy of the focal player and elements 1 ≤ uj ≤ m are the strategies of the nonfocal
players. Therefore, each element au of A is the payoff that a u0-strategist receives when grouped
with other individuals playing strategies u1 to un−1

au = π

(
eu0 ,

n−1∑
j=1

euj

)
. (D.15)

Eq. D.15 indicates that the payoff tensor A is symmetric in the sense that for any permutation
σ : {1, . . . , n− 1} → {1, . . . , n− 1} of nonfocal-players’ labels the payoff remains the same:

au = au′ where u = (u0, u1, . . . , un−1) and u′ = (u0, uσ(1), . . . , uσ(n−1)). (D.16)

For example,
a1,2,3,4 = a1,2,4,3 = a1,3,2,4 = a1,3,4,2 = a1,4,2,3 = a1,4,3,2.

The evolutionary dynamics in a well-mixed population are

ṗi = pi
(
Aip

⊗(n−1) − Ap⊗n
)
. (D.17)

To obtain the transformed payoff tensor, we seek an n-dimensional m × · · · × m tensor B
that is (i) a function of A, that is (ii) symmetric in the sense that for any permutation σ :
{1, . . . , n− 1} → {1, . . . , n− 1} of nonfocal-players’ labels the payoff remains the same:

bu = bu′ where u = (u0, u1, . . . , un−1) and u′ = (u0, uσ(1), . . . , uσ(n−1)), (D.18)

and (iii) by which the evolutionary dynamics in the homophilic game are described by

ṗi = pi
(
Bip

⊗(n−1) −Bp⊗n
)
. (D.19)

Each element of B corresponds to the transformed payoff

bu = π′ (eu0 , eu1 , . . . , eun−1

)
. (D.20)

In general, the elements bu of B involve a combination of elements av of A whose indices
v are combinations with replacement of elements of u (see examples in previous subsections).
To help us specify the relationship between v and u, we define a vector of indices of u called
j = (j0, . . . , jn−1) with elements jk ∈ {0, . . . , n − 1}, and we define uj is the vector obtained
when the indices j are applied to u such that the k-th element of uj is

(uj)k = ujk . (D.21)
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Example 12. If u = (1, 3, 5, 2) and j = (0, 0, 2, 2), then uj = (1, 1, 5, 5). ◁

By inspection of the examples for n = 3 and n = 4 in the previous subsection, we can see
that the transformation is a sum over all possible partitions of q of n, and the elements auj

involved in each term correspond to the partition structure q

bu =
∑
q⊢n

Fq

∑
q0∈q

q0
n|Jq0,q|

 ∑
j∈Jq0,q

auj

 . (D.22)

We identify Jq0,q by inspection. The first element of uj is always equal to the first element
of u, i.e., j0 = 0, which preserves the strategy pursued by the focal player. The value 0 is
repeated q0 times, which is the size of the focal’s family. Subsequent entries of j are repetitions
of unique integers between 1 and n − 1, where the number of repetitions corresponds to the
size of a nonfocal family.

We define some notation to help us describe Jq0,q. Let a = (b, c) denote the operation that
concatenates together vectors b and c into a single vector, i.e., a = (b1, . . . , b|b|, c1, . . . , c|c|).
Then the set of indices in the sum in Eq. D.22 is

Jq0,q =

j ∈ {0, . . . , n− 1}n

∣∣∣∣∣∣∣∣∣∣
j = (i0, i1, i2, . . . , i|q|−1),
i0 = (0, . . . , 0), |i0| = q0,
ik = (ik, . . . , ik), |ik| = qk, for 1 ≤ k ≤ |q| − 1,
ik ∈ {1, . . . , n− 1}, ik < il ∀k < l,[
q0, q1, . . . , q|q|−1

]
= q (equal as multisets)

 .

(D.23)
The method for obtaining the transformed payoff tensor described above is implemented

in the method create_transformed_payoff_matrix() of the TransmatBase class in the code
repository
functions/transmat_base.py.

Example 13. Calculate the set of indices Jq0,q for q = [2, 1, 1] and q0 = 1, and show how it
relates to the relevant term in the transformed payoff payoff function π′(ei, ej, ek, el) for the
4-player game (Eq. D.13).

We have |q| = 3, so we choose q1, q2 ∈ N such that [q0, q1, q2] = [1, q1, q2] equals q = [2, 1, 1]
as multisets. j has elements

j = (i0, i1, i2) = (i0, . . . , i0︸ ︷︷ ︸
q0 times

, i1, . . . , i1︸ ︷︷ ︸
q1 times

, i2, . . . , i2︸ ︷︷ ︸
q2 times

) = (0, i1, . . . , i1︸ ︷︷ ︸
q1 times

, i2, . . . , i2︸ ︷︷ ︸
q2 times

).

because i0 = 0 by definition and because q0 = 1 by our assmpution.
Possible values of q’s and i’s that satisfy all the constraints in Eq. D.23 are (q1, q2) =

(2, 1), (1, 2) and (i1, i2) = (1, 2), (1, 3), (2, 3). Therefore, the set of indices is

J1,[2,1,1] = {(0, 1, 1, 2), (0, 1, 1, 3), (0, 2, 2, 3), (0, 1, 2, 2), (0, 1, 3, 3), (0, 2, 3, 3)}.
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When the indices j ∈ J1,[2,1,1] are applied to the indices u = (i, j, k, l) indicating elements of
tensor A, the sum in Eq. D.22 becomes∑

j∈Jq0,q

auj
= ai,j,j,k + ai,j,j,l + ai,k,k,l + ai,j,k,k + ai,j,l,l + ai,k,l,l.

This sum can be written in terms of the untransformed payoffs

π(ei, ej + ej + ek) + π(ei, ej + ej + el) + . . .+ π(ei, ek + el + el),

which is equal to the numerator of the second coefficient of F[2,1,1] in the transformed payoff
function in Eq. D.13. ◁

D.3 The Jacobian matrix
Let p∗ be a steady-state distribution of M ≤ m coexisting strategies in a population. The

Jacobian matrix can be used to establish the stability of p∗. If all the eigenvalues of the Jacobian
matrix have negative real parts, then the coexistence is stable, whereas if any eigenvalue has a
positive real part, the coexistence is unstable.

Below we discuss specific local stability. Suppose that p∗ consists only of the first M(≤ m)
strategies, s1, . . . , sM , which means that p∗i > 0 for 1 ≤ i ≤ M and p∗i = 0 for M + 1 ≤ i ≤ m.
Then we can define a set

sub(p∗) := {(p1, . . . , pM , 0, . . . , 0) ∈ Rm | pi ≥ 0,
M∑
j=1

pj = 1}, (D.24)

which is an (M − 1)-dimensional sub-simplex of the (m − 1)-dimensional simplex, Sm :=
{(p1, . . . , pm) ∈ Rm | pi ≥ 0,

∑m
j=1 pj = 1}. Local asymptotic stability of p∗ on sub(p∗) is

different from local asymptotic stability of p∗ on the whole simplex Sm. The difference is
as follows. The stability in the former sense means that any small perturbation of p∗ on
sub(p∗), without the possibility that a new strategy pj > 0 (M + 1 ≤ j ≤ m) is introduced,
will be eventually cancelled out by the dynamics, whereas the stability in the latter sense
means that any small perturbation of p∗ on Sm, including the possibility that a new strategy
sj > 0 (M +1 ≤ j ≤ m) is introduced, will be eventually cancelled by the dynamics. Below, we
will discuss the former stability; that is, stability of p∗ on sub(p∗). The possibility of whether
a new strategy sj (M +1 ≤ j ≤ m) can invade p∗ or not is separately discussed in section D.4.

Because
∑M

i=1 pi = 1, one of the dimensions of the system is redundant, and therefore the
Jacobian matrix is then an (M − 1)× (M − 1) matrix with elements

Ji,j =
∂ṗi
∂pj

∣∣∣∣
p∗

(1 ≤ i, j ≤ M − 1).

We rewrite the M dynamical equations as an M − 1 dimensional system by substituting
pM = 1−

∑M−1
i=1 pi

ṗi = pi

(
πi −

M∑
k=1

pkπk

)
= pi

(
πi − πM −

M−1∑
k=1

pk(πk − πM)

)
. (D.25)
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The derivative of the expression in Eq. D.25 is,

∂ṗi
∂pi

=

(
πi − πM −

M−1∑
k=1

pk(πk − πM)

)
+pi

(
∂πi

∂pi
− ∂πM

∂pi
− (πi − πM)−

M−1∑
k=1

pk

(
∂πk

∂pi
− ∂πM

∂pi

))
,

and for i ̸= j,

∂ṗi
∂pj

= pi

(
∂πi

∂pj
− ∂πM

∂pj
− (πj − πM)−

M−1∑
k=1

pk

(
∂πk

∂pj
− ∂πM

∂pj

))
.

At the steady state p∗, the expected fitnesses of all strategies are equal, and thus πk−πM = 0
for all k. Therefore, each element of the Jacobian matrix is

Ji,j =
∂ṗi
∂pj

∣∣∣∣
p∗

= p∗i

[
∂πi

∂pj

∣∣∣∣
p∗

−
M−1∑
k=1

p∗k
∂πk

∂pj

∣∣∣∣
p∗

−

(
1−

M−1∑
k=1

p∗k

)
∂πM

∂pj

]
= p∗i

(
∂πi

∂pj

∣∣∣∣
p∗

−
M∑
k=1

p∗k
∂πk

∂pj

∣∣∣∣
p∗

)
.

(D.26)
Therefore, to find the Jacobian matrix, we must obtain a general expression for the partial

derivatives terms in Eq. D.26. For example, let us derive the derivatives for a 3-player game.
The expected payoff is

πi =
M∑
j=1

M∑
k=1

pjpk bi,j,k,

which is a function of p1, . . . , pM−1 because pM = 1−
∑M−1

j=1 pj. Writing the partial differential
operator ∂/∂px (1 ≤ x ≤ M − 1) simply as ∂x, we have

∂xpi =


1 (if i = x)
−1 (if i = M)
0 (otherwise),

which is simply written, by using the Kronecker delta, as

∂xpi = δix − δiM , (D.27)

where

δij =

{
1 (if i = j)
0 (if i ̸= j).
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By the chain rule, therefore, we have

∂xπi =
M∑
j=1

M∑
k=1

∂x(pjpk) bi,j,k

=
M∑
j=1

M∑
k=1

(∂xpj · pk + pj · ∂xpk) bi,j,k

=
M∑
j=1

M∑
k=1

{(δjx − δjM)pk + pj(δkx − δkM)} bi,j,k

=
M∑
k=1

pk(bi,x,k − bi,M,k) +
M∑
j=1

pj(bi,j,x − bi,j,M)

= 2
M∑
j=1

pj(bi,j,x − bi,j,M),

where at the last line we have used the symmetry, bi,j,k = bi,k,j.
Similarly, for a 4-player game, the expected payoff is

πi =
M∑
j=1

M∑
k=1

M∑
l=1

pjpkpl bi,j,k,l.

Applying the chain rule to ∂x(pjpkpl) and using a similar reasoning to above lead to

∂xπi = 3
M∑
j=1

M∑
k=1

pjpk(bi,j,k,x − bi,j,k,M).

In general, for n-person game the expected payoff is

πi =
M∑

j1=1

· · ·
M∑

jn−1=1

(
n−1∏
κ=1

pjκ

)
bi,j1,...,jn−1 ,

and it is easy to see that

∂xπi = (n− 1)
M∑

j1=1

· · ·
M∑

jn−2=1

(
n−2∏
κ=1

pjκ

)
(bi,j1,...,jn−2,x − bi,j1,...,jn−2,M)

holds.
The Jacobian is calculated in the method calc_jacobian() of the TransmatBase class in

the code repository functions/transmat_base.py.

D.4 Invasion fitness
Consider a stable coexistence between M strategies at strategy frequencies p∗1, p∗2, . . . , p∗M (>

0). In order for a new strategy sM+1 to successfully invade the population, the fitness of
sM+1-strategists when rare must be higher than the average fitness of the other strategies. Let
p∗ = (p∗1, p

∗
2, . . . , p

∗
M , 0, . . . , 0), where the first 0 represents the rare sM+1-strategists. Then, in
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order for sM+1 to successfully invade, its per capita growth rate must be positive:

1

pM+1

ṗM+1

∣∣∣∣
p∗

= πM+1|p∗ −
M∑
j=1

p∗j πj|p∗ > 0.

At the steady state, the expected payoff of each strategy that is present in p∗ is equal, and
therefore it is also equal to the expected payoff in the whole population:

M∑
j=1

p∗j πj|p∗ = πk|p∗ ∀k ∈ {1, . . . ,M}.

Therefore, the condition for successful invasion of sM+1 is

πM+1|p∗ − π1|p∗ > 0. (D.28)

Note that π1 above can be any πj for j ∈ {1, . . . ,M}, because they are all equal.
Once the transformed payoff tensor B is obtained, the expected payoffs πj can be evaluated

by
πj|p∗ = Bj(p

∗)⊗(n−1), (D.29)

where we have used the notation of Eq. D.10, described in Example 11.
The invasion fitness is calculated in the method calc_invasion_fitness() of the TransmatBase

class in the code repository functions/transmat_base.py.
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E Comparison with kin selection literature

There has been considerable effort to understand synergistic interactions between individuals
who are potentially genetically related. The most popular example in the literature about this
is the two-player game with two strategies, whose payoff matrix is given by

M =

(
a11 a12
a21 a22

)
=

(
B − C +D −C

B 0

)
, (E.1)

where strategy 1 is cooperation and strategy 2 is non-cooperation (Queller, 1985). Assuming
an infinitely large population with global competition, and also assuming that the current
frequency of cooperators in the population is given by p, our Eq. D.4 suggests that the proper
transformation of this payoff matrix is

M ′ =

(
b11 b12
b21 b22

)
= r2

(
B − C +D B − C +D

0 0

)
+ (1− r2)

(
B − C +D −C

B 0

)
=

(
B − C +D −C + r2(B +D)
(1− r2)B 0

)
,

(E.2)

and that the resulting replicator equation with this transformed payoff matrix is

ṗ = p(1− p) [r2B − C + {r2 + (1− r2)p}D] (E.3)

(see Eq. D.5). Therefore, we conclude the sign of the square-bracketed term above,

∆ ≡ r2B − C + {r2 + (1− r2)p}D, (E.4)

determines the direction of evolution.
We, however, would like to stress that the result above is perfectly consistent with results

derived by using inclusive fitness theory. In fact, Queller (1985) was the first to show that
∆ > 0 is the condition for evolution of cooperation. Gardner et al. (2011) have further shown
that the condition, ∆ > 0, has a proper interpretation as a Hamilton’s rule as

∆ = r2b− c > 0 (E.5)

where the “appropriate” b and c terms were shown to be

b = B +
1

1 + r2
{r2 + (1− r2)p}D,

c = C − 1

1 + r2
{r2 + (1− r2)p}D.

(E.6)

Moreover, Eq. E.4 can be rewritten in a different way as

∆ = r2B − C +

[
r2 + 1

2
+

(
p− 1

2

)
(1− r2)

]
D, (E.7)

which agrees with the format of inclusive fitness effect WIF of the allele that encodes strategy
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1, which was shown in Eq. (3.5) in Taylor and Maciejewski (2012):

WIF = βB − γC +

[
β + γ

2
+

(
p− 1

2

)
α

]
D (E.8)

with α = 1− r2, β = r2 and γ = 1. Furthermore, at p = 1/2 we have

∆|p=1/2 = r2

(
B +

D

2

)
︸ ︷︷ ︸

≡B

−
(
C − D

2

)
︸ ︷︷ ︸

≡C

, (E.9)

and this corresponds to the payoff transformation to an “equivalent” one for a finite population
model which was suggested by Taylor (2017):

M =

(
B − C −C
B 0

)
. (E.10)

These observations confirm that our general mathematical framework for (multidimensional)
matrix form games in the current paper includes many of previous arguments developed in kin-
selection literature as special cases. One gap in our approach is that we did not consider any
types of spatial structure of the population or local competition therein. For the corresponding
analyses in kin-selection literature, rich results are already known, and we refer to Lehmann
and Keller (2006), Lehmann et al. (2007), Gardner and West (2010), Ohtsuki (2010), Taylor
(2013), Taylor (2016), and Taylor (2017) as examples.
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F How we implemented the whole-group accounting

To implement the whole-group accounting, we used our expression for ṗ to find steady states
numerically (SI F.1), and then for each steady state, we checked whether or not it was locally
stable (SI F.2), and we determined if any of the other strategies not present in the population
could invade (SI F.3). The methods described here are implemented in the ModelBase class in
the code repository functions/model_base.py. An example is given in SI I.

F.1 Calculating ṗ

In the code, we reorganised the calculation of Eq. 30 so that the combinatorial terms (com-
ponents of C(z) and A(z,p)) could be precalculated and stored in minimally sized files. In this
subsection, we sketch the approach we used.

In the main text, the dynamics are written in Eq. 30 compactly as

ṗx =
∑
ga∈Ga

(
ga,x

n
π̂(ex, ga)− px

m∑
i=1

ga,i

n
π̂(ei, ga)

) ∑
z∈Zga

C(z) A(z,p) Fsum(z)

 .

We can split Eq. 30 as

ṗx =


∑

ga∈G
(x)
a

π̂(ex, ga)
∑

z∈Zga

ga,x

n
C(z) A(z,p) Fsum(z)︸ ︷︷ ︸

Hx(ga,p)



−

px

m∑
i=1

∑
ga∈G

(i)
a

π̂(ei, ga)
∑

z∈Zga

ga,i

n
C(z) A(z,p) Fsum(z)︸ ︷︷ ︸

Hi(ga,p)

 ,

(F.1)

where the sum over all strategy compositions Ga has been replaced with a sum over only those
compositions where the corresponding strategy is present, i.e.,

G(i)
a =

{
ga ∈ Nm

≥0

∣∣∣∣∣
m∑
k=1

ga,k = n and ga,i > 0

}
.

This reduces the number of combinatorial outcomes that must be considered.
The calculation of each Hi(ga,p) has an identical structure, which we took advantage of

in the code by re-indexing p. For example, when calculating Hx, we re-ordered p so the focal
frequency px was the first element in the vector and instead calculated H1. By re-indexing p,
the same coefficients C(z) and power terms ∥zi∥ from A(z,p) can be used to calculate each
Hi.

We stored the coefficients and power terms corresponding to the calculation of H1(ga,p) in
matrices with |G(1)

a | rows and Pn columns. Precalculated matrices can be found in the repository
in results/partn2prob/, and their interpretation is illustrated with an example below.
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Example 14. For groups of size n = 4 playing a game with m = 2 possible strategies, vector
H1 that lists up H1(ga,p) for all ga ∈ G(1)

a can be written by using a matrix that stores all the
pre-calculated information and a vector of the family-size distribution probabilities, named F ,
as 

H1((1, 3),p)
H1((2, 2),p)
H1((3, 1),p)
H1((4, 0),p)


︸ ︷︷ ︸

H1

=
1

4

︸︷︷︸
1/n


4p1 p

3
2 2 p1 p

2
2 p1 p2 0 0

12 p21 p
2
2 2 p21 p2 + 2 p1 p

2
2 0 4p1 p2 0

12 p31 p2 6 p21 p2 3 p1 p2 0 0
4p41 4p31 4p21 4p21 4p1


︸ ︷︷ ︸

matrix


F(4,0,0,0)

F(2,1,0,0)

F(1,0,1,0)

F(0,2,0,0)

F(0,0,0,1)


︸ ︷︷ ︸

F

.

The coefficients of the elements in the matrix can be stored in matrix form as

coef = [[[4], [2], [1], [], []],
[[12], [2, 2], [], [4], []],
[[12], [6], [3], [], []],
[[4], [4], [4], [4], [4]]],

and the powers as

pwrs = [[[1, 3]], [[1, 2]], [[1, 1]], [], []
[[2, 2]], [[2, 1], [1, 2]], [], [[1, 1]], [],
[[3, 1]], [[2, 1]], [[1, 1]], [], [],
[[4, 0]], [[3, 0]], [[2, 0]], [[2, 0]], [[1, 0]]].

For example, for the sum 2p21p2+2p1p
2
2, the entry [2, 2] in the second row and second column

of coef provides the coefficient for each product of powers, and [[2, 1], [1, 2]] in the
second row and second column of pwrs provides the powers. The .csv file of these matrices is
stored at results/partn2prob/CW_groupsize4_nustrategies2.csv. ◁

F.2 The Jacobian Matrix
Let p∗ be a steady-state distribution of M (≤ m) coexisting strategies in a population. The

Jacobian matrix can be used to establish the stability of p∗. If all the eigenvalues of the Jacobian
matrix have negative real parts, then the coexistence is stable, whereas if any eigenvalue has
a positive real part, the coexistence is unstable. Note that similarly to Section D.3, here we
discuss asymptotic stability of p∗ on sub(p∗), which is a different concept of asymptotic stability
of p∗ on the whole simplex, Sm. See Section D.3 for their difference.

The (M − 1)× (M − 1) Jacobian matrix J has elements

Ji,j =
∂ṗi
∂pj

∣∣∣∣
p∗

(1 ≤ i, j ≤ M − 1),

where we treat pM not as an independent variable because pM = 1 −
∑M−1

i=1 pi. If all the
eigenvalues of J have negative real parts, then the steady state is stable on sub(p∗).
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From Eq. F.1, the dynamics of these strategies are described by

ṗx =

 ∑
ga∈G

(x)
a

π̂(ex, ga)Hx(ga,p)

−

px

M∑
i=1

∑
ga∈G

(i)
a

π̂(ei, ga)Hi(ga,p)

 , (F.2)

where G(i)
a is the set of possible group strategy compositions composed of the M strategies with

ga,i > 0.
The diagonal elements of the Jacobian are, for 1 ≤ x ≤ M − 1,

Jx,x =
∂ṗx
∂px

∣∣∣∣
p∗

=
∑

ga∈G
(x)
a

π̂(ex, ga)
∂Hx(ga,p)

∂px

∣∣∣∣
p∗

−
M∑
i=1

∑
ga∈G

(i)
a

π̂(ei, ga)

(
px

∂Hi(ga,p)

∂px

∣∣∣∣
p∗

+Hi(ga,p
∗)

)
,

(F.3)

and the off-diagonal elements are, for x ̸= y with 1 ≤ x, y ≤ M − 1,

Jx,y =
∂ṗx
∂py

∣∣∣∣
p∗

=
∑

ga∈G
(x)
a

π̂(ex, ga)
∂Hx(ga,p)

∂py

∣∣∣∣
p∗

− px

M∑
i=1

∑
ga∈G

(i)
a

π̂(ei, ga)
∂Hi(ga,p)

∂py

∣∣∣∣
p∗
, (F.4)

where partial derivatives of H’s that appear in Eqs. F.3 and F.4 are taken by regarding H’s as
(M − 1)-variable functions of p1, . . . , pM−1. More explicitly, from pM = 1−

∑M−1
i=1 pi we have

Hx(ga,p) =
ga,x

n

∑
z∈Zga

C(z)

(
M−1∏
j=1

p
∥zj∥
j

)(
1−

M−1∑
k=1

pk

)∥zM∥

︸ ︷︷ ︸
=A(z,p)

Fsum(z), (F.5)

and therefore, for all 1 ≤ x, y ≤ M − 1,

∂Hx(ga)

∂py

∣∣∣∣
p∗

=
ga,x

n

∑
z∈Zga

C(z)

(
∥zy∥
p∗y

− ∥zM∥
p∗M

)( M∏
k=1

(p∗k)
∥zk∥

)
︸ ︷︷ ︸

=A(z,p∗)

Fsum(z). (F.6)

The calculation of the Jacobian matrix is implemented in the calc_jacobian() method of
ModelBase.

F.3 Invasion fitness
Consider a stable coexistence between M(< m) strategies with population frequencies

p∗1, p
∗
2, . . . , p

∗
M . In order for a new strategy sM+1 to successfully invade the population, the

growth rate of sM+1-strategists when rare must be positive. Let p∗ = (p∗1, p
∗
2, . . . , p

∗
M , 0, . . . , 0),

where the first 0 represents the rare sM+1-strategists. Then, in order for sM+1 to successfully
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invade

lim
p→p∗

1

pM+1

ṗM+1

= lim
p→p∗

 ∑
ga∈G

(M+1)
a

π̂(eM+1, ga)
HM+1(ga,p)

pM+1


︸ ︷︷ ︸

LHT

− lim
p→p

M+1∑
i=1

∑
ga∈G

(i)
a

π̂(ei, ga)Hi(ga,p)


︸ ︷︷ ︸

RHT

> 0

where the limit is taken from the positive side, pM+1 > 0, while keeping pM+2 = pM+3 = · · · = 0,
where G(i)

a is the set of possible group strategy compositions with ga,i > 0, and where

Hi(ga,p) =
∑

z∈Zga

ga,i

n
C(z) Fsum(z)

M+1∏
k=1

p
∥zk∥
k .

Consider the right-hand term (RHT) first, and consider its i = M + 1 term in the summa-
tion. Since ga ∈ G(M+1)

a , we know ga,M+1 > 0, which means that any strategywise family-size
distribution z ∈ Zga

contains at least one family of sM+1-strategists, and hence it should satisfy
∥zM+1∥ ≥ 1. This means that the (p∗M+1)

∥zM+1∥ term that appear in HM+1(ga,p
∗) is always

zero. Therefore, this right-hand term is equivalent to the same RHT in the absence of the
invader,

RHT =
M∑
i=1

∑
ga∈G

(i)
a

π̂(ei, ga)Hi(ga,p
∗), (F.7)

which is the average payoff to an individual in the population when the invader is nonexistent.
Now consider the left-hand term (LHT). The fraction in the LHT is calculated as

lim
p→p∗

HM+1(ga,p)

pM+1

=
∑

z∈Zga

ga,M+1

n
C(z) Fsum(z)

[
lim
p→p∗

(
M∏
k=1

(pk)
∥zk∥

)
(pM+1)

∥zM+1∥−1

]
.

Since ∥zM+1∥ ≥ 1 is always satisfied for the same reason as above, the limit inside the square
brackets above always exists and it is

lim
p→p∗

(
M∏
k=1

(pk)
∥zk∥

)
(pM+1)

∥zM+1∥−1 =

{
0 if ∥zM+1∥ > 1,∏M

k=1(p
∗
k)

∥zk∥ if ∥zM+1∥ = 1.

Recall that ∥zM+1∥ counts the number of families in the group pursuing strategy sM+1. There-
fore, the LHT calculates the expected payoff to an invader when it is a member of the only
family in the group pursuing the invading strategy.

Our interpretation of LHT above can be compared with the more familiar situation of
replicator dynamics in a well-mixed population. In a well-mixed population, the analogous
left-hand term calculates the invader’s expected payoff when it is the lone individual in the
group pursuing the invading strategy instead of a member of the lone family. This explains why
homophily can facilitate the invasion of cooperative strategies. Under homophily, cooperative
individuals are typically accompanied by family members they recruited/attracted, so they
fare better than in a well-mixed scenario, where they will be the lone cooperator in a group of
defectors.
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The calculation of invasion fitness is implemented in the calc_invasion_fitness() method
of ModelBase.
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G Analytic results for 3-player example

In this Supplement, we detail the analysis of the 3-player version of the sigmoid public goods
game that is presented in the main text. The purpose of this Supplement is to provide an
example of how the transformed payoffs can be used to analyse the dynamics under homophily.

Code to assist analytic work can be found in the functions/symbolic_transformed.py
module in the code repository, and a quick-start tutorial using examples from this appendix
can be found in tutorials/.

G.1 Payoff matrices
We explore the evolutionary dynamics of the same four strategies as the main text, which

we index as follows:

s1 = Unconditional Defectors ‘D’,
s2 = Coordinating Cooperators ‘C’,
s3 = Liars ‘L’,
s4 = Unconditional Cooperators ‘U’.

The untransformed payoff tensor A is a 4 × 4 × 4 tensor, where each of the 3 dimensions
corresponds to each of the n = 3 players, and the entries 1 to 4 correspond to the strategies s1
to s4 (Fig. G.2).

Figure G.2: The 3-dimensional payoff tensor for the 3-player game. Each dimension corresponds to a player,
the strategy of the focal player is indicated by the first index, and 4 entries correspond to the four strategies.

Consider the first layer, which specifies the payoffs the focal player (player 0) will receive
when it is a D-strategist. The row index corresponds to the strategy of player 1 and the
column to the strategy of player 2. For example, element a1,2,2 = b − β is the payoff the focal
Unconditional Defector (s1) receives when grouped with two Coordinating Cooperators (s2),
element a1,4,4 = b − β is the payoff when grouped with two Unconditional Cooperators (s4),
and element a1,2,3 = β is the payoff when grouped with one Coordinating Cooperator (s2), and
one Liar (s3). In matrix form

A1,: =


0 0 0 β
0 b− β β β
0 β 0 β
β β β b− β

 . (G.1)
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The second layer, which specifies the payoffs to a focal C-strategist, is

A2,: =


−ε b− β − c− ε β − c− ε β − ε

b− β − c− ε b− β − 2c
3
− ε b

3
+ β

3
− 2c

3
− ε b− c− ε

β − c− ε b
3
+ β

3
− 2c

3
− ε 2β

3
− 2c

3
− ε b− β − c− ε

β − ε b− c− ε b− β − c− ε b− β − ε

 . (G.2)

The third layer, which specifies the payoffs to a focal L-strategist, is

A3,: =


−ε β − ε −ε β − ε

β − ε b
3
+ β

3
− ε 2β

3
− ε b− β − ε

−ε 2β
3
− ε −ε β − ε

β − ε b− β − ε β − ε b− β − ε

 . (G.3)

And finally, the fourth layer, which specifies the payoffs to a focal U-strategist, is

A4,: =


β − c β − c β − c b− β − c
β − c b− c b− β − c b− β − c
β − c b− β − c β − c b− β − c

b− β − c b− β − c b− β − c b− c

 . (G.4)

To analyse the evolutionary dynamics under homophily, we analyse the dynamics in a well-
mixed population with payoffs given by the transformed payoff tensor B (SI D). B is calculated
using Eqs. D.22 and D.23; however, we have also written a function that automates the alge-
braic manipulations using the SymPy library: create_transformed_payoff_matrix(), which
can be found in the
functions/symbolic_transformed.py module in the code repository. The replicator dynam-
ics with this transformed payoff tensor is given by Eq. D.11.
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The transformed payoff tensor B is a 4 × 4 × 4 matrix with 3 layers as follows. The first layer, which specifies the payoffs to a focal
D-strategist, is

B1,: =


0

F[2,1](b−β)

6
0 F[1,1,1]β + F[2,1]

(
b
6
+ β

6

)
F[2,1](b−β)

6
F[1,1,1] (b− β) + F[2,1]

(
b
3
− β

3

)
F[1,1,1]β + F[2,1]

(
b
6
− β

6

)
F[1,1,1]β +

F[2,1]b

3

0 F[1,1,1]β + F[2,1]

(
b
6
− β

6

)
0 F[1,1,1]β + F[2,1]

(
b
6
+ β

6

)
F[1,1,1]β + F[2,1]

(
b
6
+ β

6

)
F[1,1,1]β +

F[2,1]b

3
F[1,1,1]β + F[2,1]

(
b
6
+ β

6

)
F[1,1,1] (b− β) + F[2,1]

(
b
3
+ β

3

)
 . (G.5)

The second layer, which specifies the payoffs to a focal C-strategist, is

B2,: =


F[2,1]

(
2b−2β−2c

3

)
+X2 F[1,1,1] (b− β − c) + F[2,1]

(
5b−5β−4c

6

)
+X2 F[1,1,1] (β − c) + F[2,1]

(
4b
9

− β
9
− 2c

3

)
+X2 F[1,1,1]β + F[2,1]

(
5b
6

− β
2
− 2c

3

)
+X2

F[1,1,1] (b− β − c) + F[2,1]

(
5b−5β−4c

6

)
+X2 F[1,1,1]

(
b− β − 2c

3

)
+ F[2,1]

(
b− β − 2c

3

)
+X2 F[1,1,1]

(
b+β−2c

3

)
+ F[2,1]

(
11b−5β−12c

18

)
+X2 F[1,1,1] (b− c) + F[2,1]

(
b− 2β

3
− 2c

3

)
+X2

F[1,1,1] (β − c) + F[2,1]

(
4b
9

− β
9
− 2c

3

)
+X2 F[1,1,1]

(
b+β−2c

3

)
+ F[2,1]

(
11b−5β−12c

18

)
+X2 F[1,1,1]

(
2β
3

− 2c
3

)
+ F[2,1]

(
2b
9

+ 4β
9

− 2c
3

)
+X2 F[1,1,1] (b− β − c) + F[2,1]

(
11b+β−12c

18

)
+X2

F[1,1,1]β + F[2,1]

(
5b
6

− β
2
− 2c

3

)
+X2 F[1,1,1] (b− c) + F[2,1]

(
b− 2β

3
− 2c

3

)
+X2 F[1,1,1] (b− β − c) + F[2,1]

(
11b+β−12c

18

)
+X2 F[1,1,1] (b− β) + F[2,1]

(
b− β

3
− 2c

3

)
+X2

 ,

(G.6)

where X2 = F[3]

(
b− β − 2c

3

)
− ε.

The third layer, which specifies the payoffs to a focal L-strategist, is

B3,: =


−ε F[1,1,1]β + F[2,1]

(
b
18

+ 5β
18

)
− ε −ε F[1,1,1]β + F[2,1]

(
b
6
+ β

6

)
− ε

F[1,1,1]β + F[2,1]

(
b
18

+ 5β
18

)
− ε F[1,1,1]

(
b
3
+ β

3

)
+ F[2,1]

(
b
9
+ 5β

9

)
− ε F[1,1,1]

(
2β
3

)
+ F[2,1]

(
b
18

+ 5β
18

)
− ε F[1,1,1] (b− β) + F[2,1]

(
2b
9
+ 4β

9

)
− ε

−ε F[1,1,1]

(
2β
3

)
+ F[2,1]

(
b
18

+ 5β
18

)
− ε −ε F[1,1,1]β + F[2,1]

(
b
6
+ β

6

)
− ε

F[1,1,1]β + F[2,1]

(
b
6
+ β

6

)
− ε F[1,1,1] (b− β) + F[2,1]

(
2b
9
+ 4β

9

)
− ε F[1,1,1]β + F[2,1]

(
b
6
+ β

6

)
− ε F[1,1,1] (b− β) + F[2,1]

(
b
3
+ β

3

)
− ε

 .

(G.7)
And finally, the fourth layer, which specifies the payoffs to a focal U-strategist, is

B4,: =


F[1,1,1] (β − c) + F[2,1]

(
2b
3

− β
3
− c

)
+X4 F[1,1,1] (β − c) + F[2,1]

(
5b
6

− β
2
− c

)
+X4 F[1,1,1] (β − c) + F[2,1]

(
2b
3

− β
3
− c

)
+X4 F[1,1,1] (b− β − c) + F[2,1]

(
5b
6

− β
6
− c

)
+X4

F[1,1,1] (β − c) + F[2,1]

(
5b
6

− β
2
− c

)
+X4 F[1,1,1] (b− c) + F[2,1]

(
b− 2β

3
− c

)
+X4 F[1,1,1] (b− β − c) + F[2,1]

(
5b
6

− β
2
− c

)
+X4 F[1,1,1] (b− β − c) + F[2,1]

(
b− β

3
− c

)
+X4

F[1,1,1] (β − c) + F[2,1]

(
2b
3

− β
3
− c

)
+X4 F[1,1,1] (b− β − c) + F[2,1]

(
5b
6

− β
2
− c

)
+X4 F[1,1,1] (β − c) + F[2,1]

(
2b
3

− β
3
− c

)
+X4 F[1,1,1] (b− β − c) + F[2,1]

(
5b
6

− β
6
− c

)
+X4

F[1,1,1] (b− β − c) + F[2,1]

(
5b
6

− β
6
− c

)
+X4 F[1,1,1] (b− β − c) + F[2,1]

(
b− β

3
− c

)
+X4 F[1,1,1] (b− β − c) + F[2,1]

(
5b
6

− β
6
− c

)
+X4 F[1,1,1] (b− c) + F[2,1] (b− c) +X4

 ,

(G.8)

where X4 = F[3](b− c).
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G.2 Analytic method
G.2.1 Qualitative dynamics between pairs of strategies

To gain insights into the homophilic replicator dynamics, we follow Peña et al. (2015) and
apply the theory of Bernstein polynomials to the transformed game. Peña et al.’s analysis is
performed between pairs of strategies A and B. They define the switching gain dk as the payoff
gain an individual would receive if they switched from being a B- to A-strategist when grouped
with k A-strategists and n− 1− k B-strategists, which is

dk = π(eA, keA + (n− 1− k)eB). (G.9)

Then, as detailed in Peña et al. (2014), insights into the replicator dynamics between A- and
B-strategists can be obtained from the sign pattern of the gain sequence d = [d0, . . . , dn−1]
(see also: Peña and Nöldeke, 2016; Nöldeke and Peña, 2016; Archetti, 2018; Peña and Nöldeke,
2018; Nöldeke and Peña, 2020; Peña et al., 2022).

G.2.2 Qualitative analysis of invasibility to a dimorphic population of coexistence pairs
We investigated the invasibility to a dimorphic population of coexisting pairs under ho-

mophily by investigating the invasibility in the transformed game in a well-mixed population
(see D.4 for theory).

Consider a stable coexistence between two strategies s1 and s2, with strategy frequencies p∗1
and p∗2, being invaded by a third strategy s3. In order for s3 to successfully invade the popu-
lation, the fitness of rare s3-strategists must higher than the average fitness in the population.
Let p∗ = (p∗1, p

∗
2, 0, 0), where the first zero represents s3, and the second zero represent the other

strategy s4 that is not considered here. Then, the condition for s3 to successfully invade is

1

p3
ṗ3

∣∣∣∣
p∗

= π3|p∗ −
2∑

j=1

p∗j πj|p∗ > 0.

At the steady state, the expected payoffs to s1-strategists and s2-strategists are equal and also
equal to the average payoff. Therefore, the condition for s3 to invade is

π3|p∗ − πj|p∗ > 0, (G.10)

which can be evaluated for either j = 1 or j = 2. Evaluating for j = 1 or j = 2 are equivalent;
however, as we will see below, because we have not specified p∗, one or the other may give
clearer analytical insights into the dynamics.

Let us choose j = 1 for the fitness comparison. Let k be the number of s1-strategists among
the n− 1 nonfocal players. Writing in terms of the transformed payoffs π′, the expected payoff
to s1-strategists at the s1+s2 coexistence is

π1|p∗ =
n−1∑
k=0

(
n− 1

k

)
(p∗1)

k(p∗2)
n−1−k π′(e1, e1, . . . , e1︸ ︷︷ ︸

k times

, e2, . . . , e2︸ ︷︷ ︸
(n− 1− k) times

),

and the expected payoff to rare invading s3-strategists is

π3|p∗ =
n−1∑
k=0

(
n− 1

k

)
(p∗1)

k(p∗2)
n−1−k π′(e3, e1, . . . , e1︸ ︷︷ ︸

k times

, e2, . . . , e2︸ ︷︷ ︸
(n− 1− k) times

),
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Therefore, we are able to simplify the condition for s3 to invade (Eq. G.10) as

n−1∑
k=0

(
n− 1

k

)
(p∗1)

k(p∗2)
n−1−k

π′(e3, e1, . . . , e1︸ ︷︷ ︸
k times

, e2, . . . , e2︸ ︷︷ ︸
(n− 1− k) times

)− π′(e1, e1, . . . , e1︸ ︷︷ ︸
k times

, e2, . . . , e2︸ ︷︷ ︸
(n− 1− k) times

)

 > 0

(G.11)
For brevity, define

hk := π′(e3, e1, . . . , e1︸ ︷︷ ︸
k times

, e2, . . . , e2︸ ︷︷ ︸
(n− 1− k) times

)− π′(e1, e1, . . . , e1︸ ︷︷ ︸
k times

, e2, . . . , e2︸ ︷︷ ︸
(n− 1− k) times

). (G.12)

Therefore, a sufficient (but not necessary) condition for s3 to successfully invade the s1+s2
coexistence is that every hk term is positive

hk > 0 ∀k ∈ {0, . . . , n− 1}. (G.13)

G.3 Main analytic results
In the process of performing the analysis, we uncovered two conditions that we deemed

useful to impose as additional assumptions on the rest of the analysis. First, we found that
b − β − c − ε > 0 is a necessary condition for the persistence in a well-mixed population of
Coordinating Cooperators (detailed in G.4.1). We are specifically interested in the evolution of
coordination, so we impose this necessary condition as an assumption. Second, the assumption
c − β > ε simplified the C vs. U pairwise analysis (G.4.5). This second assumption can be
compared to the more natural assumption c− β > 0, which ensures that a lone contributor is
presented with a social dilemma. The assumption c−β > ε can be interpreted as strengthening
this social-dilemma requirement.

We are particularly interested in the scenario where the level of homophily gradually changes
from the ancestral state of perfect homophily, F[1,1,1] = F[2,1] = 0, F[3] = 1, to the state of no
homophily, F[1,1,1] = 1, F[2,1] = F[3] = 0, during which F[3] can possibly decrease and F[1,1,1] can
possibly increase. We do not particularly specify how F[2,1] changes.

We found that the evolutionary dynamics are divided into different qualitative regimes
depending on two main parameter conditions (Fig. G.3). First, when the condition

c

3
− β − ε > 0 (G.14)

is satisfied, the ancestral state under perfect homophily is an all-C population; whereas when
c
3
−β−ε < 0, the ancestral state is all-U. In general, declining homophily facilitates the invasion

of D and L (Table G.10). If the ancestral state is all-U, then under zero homophily a C+U
coexistence is possible.

The second condition determined whether or not Coordinating Cooperators can resist inva-
sion by Liars. If

b− 2β > c, (G.15)

then Liars can never invade a C+D coexistence regardless of the homophily level. The condition
in Eq. G.15 also ensures that Liars can never invade a population of all-C, and it is a necessary
condition for coexistences D+U and L+U (provided ε is small) in a well-mixed population.
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Figure G.3: A summary of the evolutionary dynamics between the four strategies, where arrows represent the
evolutionary trajectories between population states, and shaded nodes indicate uninvadable evolutionary end
states, subject to the assumptions described in the main text. Edges marked with a question mark indicate
invasion scenarios for which we could not find a simple analytic condition. Note that under no homophily with
b− 2β > c, the coexistences D+U and L+U depicted are possible but not necessarily present, depending on the
parameter values. They are included here to provide a fuller accounting of the dynamics.
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Table G.10: Summary of the pairwise analysis. The conditions marked with subscripts were imposed as assumptions: (1) allows Coordinated Cooperation to
persist in a well-mixed population in coexistence with Defectors, and (2) ensures the social dilemma faced by the lone contributor is not arbitrarily weak.

Perfect
Pair Additional constraints No homophily homophily Effect of homophily Effect of nonlinearity

D vs. C D can invade all-C. C dominates. D invasion impeded. Under no homophily,
C cannot invade all-D. C invasion facilitated. coexistence facilitated.

(1) b− β − c− ε > 0 Coexistence possible.
D vs. L D can invade all-L. D dominates. None. None.

L cannot invade all-D.
D dominates.

D vs. U D can invade all-U. U dominates. D invasion impeded. Under no homophily,
U cannot invade all-D. U invasion facilitated. coexistence facilitated.

b− 2β − c > 0 Coexistence possible.
b− 2β − c < 0 D dominates.

C vs. L C cannot invade all-L. C dominates. C invasion facilitated. Under no homophily, shifts
L invasion impeded. from L-dominates to

b− 2β − c > 0 L cannot invade all-C. bistability regime.
Bistability.

b− 2β − c < 0 L can invade all-C.
L dominates.

C vs. U (2) c− β > ε C can invade all-U C invasion impeded. Shift from c/3− β − ε < 0
U cannot invade all-C to c/3− β − ε > 0 regime.

c/3− β − ε > 0 C dominates. C dominates.
c/3− β − ε < 0 Coexistence. U dominates.

L vs. U L can invade all-U. U dominates. L invasion impeded. Under no homophily,
U cannot invade all-L. U invasion facilitated. coexistence facilitated.

b− 2β − c > 0 Coexistence possible.
b− 2β − c < 0 L dominates.
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The condition in Eq. G.15 also has an intuitive interpretation: it is the condition under
which contributing to the public good is in the self-interests of those who have been chosen
by the lottery as contributors when there is already τ − 1 = 1 contributor, because b − 2β =
(b−β)−β = B(2)−B(1) represents the marginal benefit of contribution, whereas c is its cost.
In other words, the condition where lying is against one’s self-interests. The condition can
also be interpreted geometrically using Peña et al.’s framework: Eq. G.15 is the requirement
that contributors have a positive switching gain against defectors when there are τ − 1 other
contributors in the group (Fig. G.4a).
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Figure G.4: An example comparing payoffs, gain sequences (see Eq. G.9), and gain functions (see Peña et al.
(2014); it is defined as the difference in average payoffs between two focal strategies at given frequencies of
strategies; U minus D is shown in (a), and C minus D is shown in (b)) between strategy pairs (a) Unconditional
Cooperators versus Unconditional Defectors, and (b) Coordinating Cooperators versus Unconditional Defectors.
Although Unconditional Cooperators are dominated by Unconditional Defectors, Coordinating Cooperators can
coexist with Unconditional Defectors, and the positive switching gain b− 2β − c > 0 ensures that Liars cannot
invade (see text). Parameter values: n = 3, τ = 2, β = 1/8, c = 0.5, ε = 0.05.

S47



The invasibility analysis of the coexistence pairs (Table G.11) also reveals some relationships
that are mirrored in the results from the larger numerical example. For example, in the 3-player
game, we found analytically that C can invade D+U if and only if C can invade all-D. This is
observed numerically in the 8-player game, where the separatrix preventing the invasion of C
into D+U appears at the same time as the separatrix on the D-C (Fig. 5).

Table G.11: Summary of the invasion analysis into coexisting pairs.

Pair Invader No-homophily results Other results

D+U C C cannot invade D+U. Increasing homophily facilitates C invasion.
C can invade D+U iff C can invade all-D.

L L cannot invade D+U. Neither nonlinearity nor homophily affects
L invasion (invasion fitness is a constant −ε).

C+D L L can invade C+D iff If C+D can resist L invasion at zero homophily,
b− 2β − c < 0. C+D can resist L invasion at any homophily level.

U U cannot invade C+D. Increasing homophily facilitates U invasion.
U can invade C+D iff U can invade all-D.

C+U D If b− 2β − c < 0, If D can invade C+U, D can invade all-C.
D can invade C+U.

L If b− 2β − c < 0,
L can invade C+U.

L+U D D can invade L+U. Neither nonlinearity nor homophily affects
D invasion (invasion fitness is a constant ε).

C Provided c− β > 0
and ε → +0, then
C can invade L+U.

G.4 Detailed results: Qualitative dynamics between pairs of strategies
G.4.1 Unconditional Defectors versus Coordinating Cooperators

We consider the switching gains dk from C to D, where k is the number of Defectors among
the n− 1 other group members.

Under perfect homophily (F[1,1,1] = F[2,1] = 0, F[3] = 1)

d0 = d1 = d2 = −b+ β +
2c

3
+ ε < 0, (G.16)

which indicates that C dominates (Result 3.1.a Peña et al., 2014).
Under zero homophily (F[1,1,1] = 1, F[2,1] = F[3] = 0)

d = (ε+
2c

3︸ ︷︷ ︸
(+)

,−b+ β + c+ ε︸ ︷︷ ︸
(x)

, ε︸︷︷︸
(+)

). (G.17)

Split into two cases:

1. If (x) = −b+β+c+ε > 0, then d = (+,+,+), which indicates that D dominates (Result
3.1.b, Peña et al., 2014).
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2. If (x) = −b + β + c + ε < 0, then d = (+,−,+), which indicates that C+D coexistence
is possible depending on the specific parameter values (Result 4, Peña et al., 2014).

Because we are interested in the scenario where Coordinating Cooperators can persist in a
well-mixed population with Defectors, we will therefore impose (x) < 0 as an assumption for
the remainder of the analysis:

Assume: − b+ β + c+ ε < 0. (G.18)

Under zero homophily, as nonlinearity increases (i.e., β decreases from b/3 to 0), the
negative d1 term becomes more negative while d0 and d2 are unchanged. Therefore, nonlinearity
facilitates coexistence.

Under intermediate homophily, after applying the simplification F[2,1] = 1−F[1,1,1]−F[3],
we obtain

d0 = F[1,1,1]

(
2b

3
− 2β

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3
+

β

3

)
︸ ︷︷ ︸

(−)

−2b

3
+

2β

3
+

2c

3
+ ε (G.19)

d1 = F[1,1,1]

(
− b

3
+

β

3
+

c

3

)
︸ ︷︷ ︸

(−)

+F[3]

(
− b

3
+

β

3

)
︸ ︷︷ ︸

(−)

−2b

3
+

2β

3
+

2c

3
+ ε (G.20)

d2 = F[1,1,1]

(
2b

3
− 2β

3
− 2c

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3
+

β

3

)
︸ ︷︷ ︸

(−)

−2b

3
+

2β

3
+

2c

3
+ ε (G.21)

Increasing homophily decreases F[1,1,1] and/or increases F[3], so the effect of increasing ho-
mophily is to:

• decrease d0, which implies the invasion of D into all-C is impeded, and

• decrease d2, which implies the invasion of C into all-D is facilitated.

G.4.2 Unconditional Defectors versus Liars
The switching gains dk from L to D, where k is the number of Defectors among the n − 1

other group members, are all equal

d0 = d1 = d2 = ε > 0. (G.22)

The switching gain sign pattern d = (+,+,+) indicates that D dominates (Result 3.1.b Peña
et al., 2014). The switching gains are independent of the family partition structure probabil-
ities Fq; therefore, the dynamics are unaffected by homophily. The switching gains are also
independent of β; therefore, the dynamics are unaffected by the degree of nonlinearity of the
benefits function.

G.4.3 Unconditional Defectors versus Unconditional Cooperators
We consider the switching gains dk from U to D, where k is the number of Defectors among

the n− 1 other group members.
Under perfect homophily (F[1,1,1] = F[2,1] = 0, F[3] = 1)

d0 = −b+ c < 0, (G.23)
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which indicates that U dominates (Result 3.1.a Peña et al., 2014).
Under zero homophily (F[1,1,1] = 1, F[2,1] = F[3] = 0)

d = (−β + c︸ ︷︷ ︸
(+)

,−b+ 2β + c︸ ︷︷ ︸
−(g)

,−β + c︸ ︷︷ ︸
(+)

). (G.24)

Two cases depending on the sign of (g):

1. If b− 2β − c < 0, the sign pattern is d = (+,+,+), and D dominates (Result 3.1.b, Peña
et al., 2014).

2. If b − 2β − c > 0, the sign pattern is d = (+,−,+), and coexistence U+D is possible
depending on the specific parameter values (Result 4, Peña et al., 2014).

Under zero homophily, as nonlinearity increases (i.e., β decreases from b/3 to 0),
coexistence is facilitated. In a linear game, b = 3β, then d0 = d1 = d2 = −β + c > 0, which
means D dominates. However, in a threshold game, β = 0, then d = (+,−,+), which means
U+D coexistence is possible.

Under intermediate homophily, after applying the simplification F[2,1] = 1−F[1,1,1]−F[3],
we obtain

d0 = F[1,1,1]

(
2b

3
− 4β

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3
− β

3

)
︸ ︷︷ ︸

(−)

−2b

3
+

β

3
+ c, (G.25)

d1 = F[1,1,1]

(
− b

3
+

5β

3

)
︸ ︷︷ ︸

(+/−)

+F[3]

(
− b

3
− β

3

)
︸ ︷︷ ︸

(−)

−2b

3
+

β

3
+ c, (G.26)

d2 = F[1,1,1]

(
2b

3
− 4β

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3
− β

3

)
︸ ︷︷ ︸

(−)

−2b

3
+

β

3
+ c. (G.27)

Increasing homophily decreases F[1,1,1] and/or increases F[3], so the effect of increasing ho-
mophily is to:

• decrease d0, which implies the invasion of D into all-U is impeded, and

• decrease d2, which implies the invasion of U into all-D is facilitated.

Under intermediate homophily in a linear game (β = b/3), all switching gains are
equal. Increasing homophily uniformly decreases their value. Therefore, there is a sudden
transition from a D-dominates to U-dominates regime.
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Under intermediate homophily in a threshold game (β = 0),

d1 = F[1,1,1]

(
2b

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3

)
︸ ︷︷ ︸

(−)

−2b

3
+ c, (G.28)

d2 = F[1,1,1]

(
− b

3

)
︸ ︷︷ ︸

(−)

+F[3]

(
− b

3

)
︸ ︷︷ ︸

(−)

−2b

3
+ c, (G.29)

d3 = F[1,1,1]

(
2b

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3

)
︸ ︷︷ ︸

(−)

−2b

3
+ c. (G.30)

Increasing homophily decreases F[1,1,1] and/or increases F[3], so the effect of increasing ho-
mophily is to:

• decrease d0, which implies the invasion of D into all-U is impeded, and

• decrease d2, which implies the invasion of U into all-D is facilitated.

G.4.4 Coordinating Cooperators versus Liars
We consider the switching gains dk from L to C, where k is the number of Coordinating

Cooperators among the n− 1 other group members.
Under perfect homophily (F[1,1,1] = F[2,1] = 0, F[3] = 1)

d0 = d1 = d2 = b− β − 2c

3
> 0, (G.31)

which indicates that C dominates (Result 3.1.b, Peña et al., 2014).
Under zero homophily (F[1,1,1] = 1, F[2,1] = F[3] = 0)

d = (1/3)(2β − 2c︸ ︷︷ ︸
(−)

, b− β − 2c︸ ︷︷ ︸
(f)

, 2b− 4β − 2c︸ ︷︷ ︸
2×(g)

), (G.32)

where (g) > 0 is a necessary condition for the coexistence U+D (G.4.3 above).
Note that (g) = b− β + (f) where b− β > 0; therefore, (g) > (f). Therefore, we can split

into two cases depending on the sign of (g):

1. If b−2β− c < 0, the switching gain sign pattern is or d = (−,−,−), which indicates that
C cannot invade all-L, L can invade all-C, and L dominates (Result 3.1.a, Peña et al.,
2014).

2. If b−2β− c > 0, the switching gain sign pattern is either d = (−,−,+) or d = (−,+,+),
which indicates that C cannot invade all-L, L cannot invade all-C, and there is bistability
between them (Result 3.2.a, Peña et al., 2014).

Under zero homophily, as nonlinearity increases (i.e., β decreases from b/3 to 0), the
term marked (g) switches from a negative to positive value. Therefore, the effect of increasing
nonlinearity in the benefits function is to transition the dynamics from the L-dominates regime
to the bistability regime.

S51



Under intermediate homophily, after applying the simplification F[2,1] = 1−F[1,1,1]−F[3],
we obtain

d0 = F[1,1,1]

(
−2b

9
+

2β

9

)
︸ ︷︷ ︸

(−)

+F[3]

(
7b

9
− 13β

9

)
︸ ︷︷ ︸
(+) because β≤b/3

+
2b

9
+

4β

9
− 2c

3
, (G.33)

d1 = F[1,1,1]

(
−2b

9
+

2β

9

)
︸ ︷︷ ︸

(−)

+F[3]

(
4b

9
− 4β

9

)
︸ ︷︷ ︸

(+)

+
5b

9
− 5β

9
− 2c

3
, (G.34)

d2 = F[1,1,1]

(
−2b

9
+

2β

9

)
︸ ︷︷ ︸

(−)

+F[3]

(
b

9
+

5β

9

)
︸ ︷︷ ︸

(+)

+
8b

9
− 14β

9
− 2c

3
. (G.35)

Increasing homophily decreases F[1,1,1] and/or increases F[3], so the effect of increasing ho-
mophily is to:

• increase d0, which implies the invasion of C into all-L is facilitated,

• increase d2, which implies the invasion of L into all-C is impeded.

Under intermediate homophily in a linear game (β = b/3), all switching gain terms
are equal

di = −
4F[1,1,1]β

9
+

8F[3]β

9
+

10β

9
− 2c

3
. (G.36)

Increasing homophily decreases F[1,1,1] and/or increases F[3], so the effect of increasing ho-
mophily is to decrease all di, which implies a sudden switch from an L-dominates to C-dominates
regime.

Under intermediate homophily in a threshold game (β = 0), the signs of the coeffi-
cients in front of F[1,1,1] and F[3] are unchanged from Eqs. G.33 to G.35; therefore, the qualitative
effects of increasing homophily are the same:

• the invasion of C into all-L is facilitated, and

• the invasion of L into all-C is impeded.

G.4.5 Coordinating Cooperators versus Unconditional Cooperators
We consider the switching gains dk from U to C, where k is the number of Coordinating

Cooperators among the n− 1 other group members.
Under perfect homophily (F[1,1,1] = F[2,1] = 0, F[3] = 1)

d0 = d1 = d2 =
c

3
− β − ε, (G.37)

which splits into two cases:

1. if c
3
− β − ε > 0, C dominates; else

2. if c
3
− β − ε < 0, U dominates.

Under perfect homophily, as nonlinearity increases (i.e., β decreases from b/3 to 0),
the system switches from a U-dominates to C-dominates regime.
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Under zero homophily (F[1,1,1] = 1, F[2,1] = F[3] = 0)

d = (−β + c− ε, β − ε,
c

3
− β − ε︸ ︷︷ ︸

(h)

). (G.38)

Let us impose the condition c − β > ε. We previously assumed c > β, which means that
a lone contributor is faced with a social dilemma. The condition c − β > ε strengthens this
requirement so that the social dilemma is not arbitrarily weak.

First, consider the case where β > ε, i.e., a benefits function that is not arbitrarily close to
a threshold game. Then we can split the dynamics into two cases:

1. if c
3
− β − ε > 0, d = (+,+,+), C dominates (Result 3.1b, Peña et al., 2014); else,

2. if c
3
− β − ε < 0, d = (+,+,−), C+U coexist (Result 3.2b, Peña et al., 2014).

Now let us consider the threshold game (β = 0). Then d = (+,−,+). Technically, this
sign pattern allows for the possibility of two interior equilibria (Result 5, Peña et al., 2014).
However, because ε is very small, the gain function will not cross the zero axis, and therefore
C will dominate.

From the analysis above, under zero homophily, as nonlinearity increases (i.e., β
decreases from b/3 to 0), the dynamics switch from a C+U coexistence to C-dominates regime.

Under intermediate homophily, after applying the simplification F[2,1] = 1−F[1,1,1]−F[3],
we obtain

d0 = F[1,1,1]

(
−2β

3
+

2c

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
−2β

3

)
︸ ︷︷ ︸

(−)

−β

3
+

c

3
− ε︸ ︷︷ ︸

(+)

, (G.39)

d1 = F[1,1,1]

(
4β

3
− c

3

)
︸ ︷︷ ︸

(+) if h<0; else (+/−)

+F[3]

(
−2β

3

)
︸ ︷︷ ︸

(−)

−β

3
+

c

3
− ε︸ ︷︷ ︸

(+)

, (G.40)

d2 = (F[1,1,1] + F[3])︸ ︷︷ ︸
(1−F[2,1])

(
−2β

3

)
−β

3
+

c

3
− ε︸ ︷︷ ︸

(+)

. (G.41)

Increasing homophily decreases F[1,1,1] and/or increases F[3], so the effect of increasing ho-
mophily is to decrease d0, which implies that the invasion of C into all-U is impeded.

For the three group-formation models that we consider (see Sec. 2.3 in the main text), F[2,1]

has a hump-shaped relationship with our (non-)homophily parameter, h or α. Therefore, d2
has a v-shaped relationship with homophily, which implies that, as homophily increases, the
invasion of U into all-C is initially facilitated but then impeded.

Under intermediate homophily in a threshold game (β = 0), d0 > 0 and d2 =
c/3− ε > 0; therefore, C can invade all-U and U cannot invade all-C.

G.4.6 Liars versus Unconditional Cooperators
We consider the switching gains dk from U to L, where k is the number of Liars among the

n− 1 other group members.
Under perfect homophily (F[1,1,1] = F[2,1] = 0, F[3] = 1)

d0 = d1 = d2 = −b+ c− ε < 0, (G.42)

S53



which indicates that U dominates (Result 3.1.a, Peña et al., 2014).
Under zero homophily (F[1,1,1] = 1, F[2,1] = F[3] = 0), assuming that c−β > ε (see G.4.5),

then
d = (−β + c− ε︸ ︷︷ ︸

(+)

,−b+ 2β + c︸ ︷︷ ︸
−(g)

−ε,−β + c− ε︸ ︷︷ ︸
(+)

), (G.43)

which splits into two cases:

1. If (g) > 0, d = (+,−,+), the switching gain sign pattern is d = (+,−,+), which indicates
that L can invade all-U, U cannot invade all-L, and U+L coexistence is possible (Result
4.2, Peña et al., 2014).

2. If (g) < 0, d = (+,+,+), the switching gain sign pattern is d = (+,+,+), which indicates
L dominates (Result 3.1.a, Peña et al., 2014).

Note that the term marked (g) above is also involved in the dynamics of U vs. D and C vs. L.
Specifically, under zero homophily, (g) > 0 is: a necessary condition for the coexistence U+D
(G.5.3); and a necessary and sufficient condition for all-C to resist invasion by L (G.4.4).

Under zero homophily, as nonlinearity increases (i.e., β decreases from b/3 to 0), the
dynamics can potentially switch from an L-dominates to a U+L coexistence regime.

Under intermediate homophily, after applying the simplification F[2,1] = 1−F[1,1,1]−F[3],
we obtain

d0 = F[1,1,1]

(
2b

3
− 4β

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3
− β

3

)
︸ ︷︷ ︸

(−)

−2b

3
+

β

3
+ c− ε, (G.44)

d1 = F[1,1,1]

(
− b

3
+

5β

3

)
︸ ︷︷ ︸

(+/−)

+F[3]

(
− b

3
− β

3

)
︸ ︷︷ ︸

(−)

−2b

3
+

β

3
+ c− ε, (G.45)

d2 = F[1,1,1]

(
2b

3
− 4β

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3
− β

3

)
︸ ︷︷ ︸

(−)

−2b

3
+

β

3
+ c− ε. (G.46)

Increasing homophily decreases F[1,1,1] and/or increases F[3], so the effect of increasing ho-
mophily is to

• decrease d0, which implies the invasion of L into all-U is impeded,

• decrease d1, which implies the invasion of U into all-L is facilitated.

Under intermediate homophily in a linear game (β = b/3), all switching gains are
equal. Increasing homophily uniformly decreases their value. Therefore, there is a sudden
transition from an L-dominates regime to a U-dominates regime.
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Under intermediate homophily in a threshold game (β = 0),

d1 = F[1,1,1]

(
2b

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3

)
︸ ︷︷ ︸

(−)

−2b

3
+ c− ε, (G.47)

d2 = F[1,1,1]

(
− b

3

)
︸ ︷︷ ︸

(−)

+F[3]

(
− b

3

)
︸ ︷︷ ︸

(−)

−2b

3
+ c− ε, (G.48)

d3 = F[1,1,1]

(
2b

3

)
︸ ︷︷ ︸

(+)

+F[3]

(
− b

3

)
︸ ︷︷ ︸

(−)

−2b

3
+ c− ε. (G.49)

Increasing homophily decreases F[1,1,1] and/or increases F[3], so the effect of increasing ho-
mophily is to:

• decrease d0, which implies the invasion of L into all-U is impeded, and

• decrease d2, which implies the invasion of U into all-L is facilitated.

G.5 Detailed results: Qualitative analysis of invasibility of coexistence pairs
In the previous subsection, we found that stable coexistence was possible between some

pairs of strategies. In this section, we investigate whether or not pairs of strategies in a stable
coexistence can be invaded by the other strategies.

G.5.1 Coordinating Cooperators + Unconditional Cooperators coexistence
Invasion of Defectors into C+U. Under zero homophily, choosing U for the fitness

comparison,

h0 = c− β > 0, (G.50)
h1 = −b+ 2β + c = −(g), (G.51)
h2 = c− β > 0. (G.52)

(see Eq. G.12 for the definition of hk). Remember that (g) > 0 is, as derived above, a necessary
and sufficient condition for all-C to resist invasion by L (G.4.4). Therefore, if L can invade
all-C, then (g) < 0, then h0, h1, h2 > 0, then D can invade C+U.

Under intermediate homophily, choosing C for the fitness comparison

h0 = F[1,1,1] ε︸︷︷︸
(+)

+F[2,1]

(
−2b

3
+

2β

3
+

2c

3
+ ε

)
︸ ︷︷ ︸

(−)

+F[3]

(
−b+ β +

2c

3
+ ε

)
︸ ︷︷ ︸

(−)

, (G.53)

h1 = F[1,1,1] (−b+ β + c+ ε)︸ ︷︷ ︸
(−)

+F[2,1]

(
−2b

3
+

2β

3
+

2c

3
+ ε

)
︸ ︷︷ ︸

(−)

+F[3]

(
−b+ β +

2c

3
+ ε

)
︸ ︷︷ ︸

(−)

(G.54)

h2 = F[1,1,1]

(
2c

3
+ ε

)
︸ ︷︷ ︸

(+)

,+F[2,1]

(
−2b

3
+

2β

3
+

2c

3
+ ε

)
︸ ︷︷ ︸

(−)

+F[3]

(
−b+ β +

2c

3
+ ε

)
︸ ︷︷ ︸

(−)

. (G.55)
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When no groups contain no family members (i.e., F[1,1,1] = 0, F[2,1]+F[3] = 1), D cannot invade
C+U. As F[1,1,1] increases, h2 switches from negative to positive before h0. Therefore, all-C
becomes invadable to D before C+U. Therefore, a necessary condition for D to invade C+U is
D can invade all-C.

Invasion of Liars into C+U. Under zero homophily, choosing C for the fitness comparison

h0 = 0, (G.56)
h1 = c− β > 0, (G.57)

h2 =
−2b+ 4β + 2c

3
= −2

(g)

3
. (G.58)

Remember that (g) > 0 is, as derived above, a necessary and sufficient condition for all-C to
resist invasion by L (G.4.4). Therefore, if L can invade all-C, then (g) < 0, then h0, h1, h2 > 0,
then L can invade C+U.

Choosing U for the fitness comparison

h0 = −2b

3
+

β

3
+ c− ε, (G.59)

h1 = c− ε > 0, (G.60)
h2 = −β + c− ε > 0. (G.61)

Therefore, a sufficient condition for L to invade C+U is

−2b+ β + 3c− 3ϵ > 0. (G.62)

Under intermediate homophily, no obvious insights were found.

G.5.2 Coordinating Cooperators + Unconditional Defectors coexistence
Invasion of Liars into C+D. Under zero homophily, choosing C for the fitness compari-

son, the invasion fitness coefficients for rare L invading the C+D coexistence are

h0 = 0, (G.63)
h1 = −b+ 2β + c︸ ︷︷ ︸

−(g)

, (G.64)

h2 = −2b

3
+

4β

3
+

2c

3︸ ︷︷ ︸
−2(g)/3

, (G.65)

where (g) > 0 is, as derived above, a necessary and sufficient condition for all-C to resist
invasion by L (G.4.4). Therefore, under zero homophily, C+D can resist invasion by Liars if
and only if all-C can resist invasion by Liars.
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Under intermediate homophily

h0 = F[2,1]

(
−2b

3
+

2β

3
+

2c

3

)
︸ ︷︷ ︸

(−)

+F[3]

(
−b+ β +

2c

3

)
︸ ︷︷ ︸

(−)

, (G.66)

h1 = F[2,1]

(
2b

9
− 8β

9
− c

3

)
︸ ︷︷ ︸

(x)

+F[3]

(
−β − c

3

)
︸ ︷︷ ︸

(−)

+−b+ 2β + c︸ ︷︷ ︸
−(g)

, (G.67)

h2 = F[2,1]

(
−2b

9
+

2β

9

)
︸ ︷︷ ︸

(−)

+F[3]

(
− b

3
− β

3

)
︸ ︷︷ ︸

(−)

+−2b

3
+

4β

3
+

2c

3︸ ︷︷ ︸
−(g)

(G.68)

If (g) > 0, then h0 and h2 are negative. To show h1 is negative, assume (x) is positive, and find
the maximum possible value of h1, which is when F[2,1] = 1 and F[1,1,1] = F[3] = 0. Then

9h1 = −5 (b− 2β − c)︸ ︷︷ ︸
(g)

+ c− 2b︸ ︷︷ ︸
(−)

< 0. (G.69)

Therefore, if C+D can resist invasion by Liars under zero homophily, then C+D can resist
invasion by Liars at any level of homophily.

Invasion of Unconditional Cooperators into C+D. Under zero homophily, choosing
D for the fitness comparison.

h0 = h1 = h2 = β − c < 0, (G.70)

therefore U cannot invade the C+D coexistence.
Under intermediate homophily, choosing D for the fitness comparison, all terms are equal:

hi = F[1,1,1]

(
−2b

3
+

4β

3

)
︸ ︷︷ ︸

(−)

+F[3]

(
b

3
+

β

3

)
︸ ︷︷ ︸

(+)

+
2b

3
− β

3
− c (G.71)

The effect of increasing homophily is to decrease F[1,1,1] and/or increase F[3], therefore the effect
of increasing homophily is to increase all hi by the same amount, which is to facilitate the the
invasion of U into C+D.

If h2 > 0, then U can invade all-D. Therefore, U can invade C+D iff U can invade all-D.

G.5.3 Unconditional Defectors coexistence + Unconditional Cooperators coexistence
Invasion of Coordinating Cooperators into D+U. Under zero homophily, choosing D

for the fitness comparison
h0 = h1 = h2 = −ε < 0, (G.72)

therefore C cannot invade the D+U coexistence.
Under intermediate homophily, choosing D for the fitness comparison, all terms are equal:

hi = F[1,1,1]

(
−2b

3
+

2β

3
+

2c

3

)
︸ ︷︷ ︸

(−)

+F[3]

(
b

3
− β

3

)
︸ ︷︷ ︸

(+)

+
2b

3
− 2β

3
− 2c

3
− ε (G.73)

Increasing homophily decreases F[1,1,1] and/or increases F[3]; therefore, increasing homophily
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facilitates the invasion of C into D+U.
If h2 > 0, then C can invade all-D. Therefore, C can invade D+U if and only if C can invade

all-D.
Invasion of Liars into D+U. Under intermediate homophily, choosing D for the fitness

comparison, all terms are equal
hi = −ε, (G.74)

therefore L cannot invade D+U, and neither nonlinearity nor homophily has an effect on its
invasion.

G.5.4 Liars + Unconditional Cooperators coexistence
Invasion of Unconditional Defectors into L+U. Choosing L for the fitness comparison,

the invasion fitness coefficients for rare D invading the L+U coexistence are all constant and
equal:

h0 = h1 = h2 = ε > 0. (G.75)

Therefore, D can always invade L+U, and neither nonlinearity nor homophily has an effect on
invasion.

Invasion of Coordinating Cooperators into L+U. Under zero homophily, choosing U
for the fitness comparison, we have

h0 = −β

3
+

c

3
− ε, (G.76)

h1 = −ε, (G.77)
h2 = −β + c− ε. (G.78)

Consider the case of c > β. If ε = 0, we find that h0 > 0, h1 = 0 and h2 > 0. This means
the invasion condition, Eq. G.11, which requires a weighted sum of hi terms to be positive,
is satisfied and therefore C invades L+U. Since the left hand side of Eq. G.11 is obviously a
continuous function of ε, by the continuity argument C can still invade L+U as long as ε → 0
is small enough. Therefore we can conclude that c > β and ε → 0 is a sufficient condition for
C to invade L+U.

Under intermediate homophily, on the other hand, the hi have mixed signs and no obvious
insights found.
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H Analytic results for 8-player Coordinated Cooperation example

H.1 Payoffs
We calculated the expected payoffs in the sigmoid PGG as follows. For clarity, let us index

the variables with the strategy names instead of the strategy indices. Let gs be the number of
s-strategists in the whole group (s ∈ {D,C, L, U}), and let ga = (gD, gC , gL, gU) If the lottery
meets quorum, i.e., gC + gL ≥ τ , then the probability that j Coordinating Cooperators and
τ − j Liars will be designated as contributors is

Pj =


(gCj )(

gL
τ−j)

(gC+gL
τ )

if max(0, τ − gL) ≤ j ≤ min(gC , τ),

0 otherwise.
(H.1)

Therefore, the expected payoff to an individual pursuing each of the strategies are as follows:
to Unconditional Defectors

π̂(eD, ga) =

{
B(gU) if gC + gL < τ,∑τ

j=0 PjB(j + gU) if gC + gL ≥ τ,
(H.2)

to Coordinating Cooperators

π̂(eC , ga) =

{
B(gU)− ε if gC + gL < τ,(∑τ

j=0 Pj

(
B(j + gU)− j

gC
c
))

− ε if gC + gL ≥ τ,
(H.3)

to Liars

π̂(eL, ga) =

{
B(gU)− ε if gC + gL < τ,(∑τ

j=0 PjB(j + gU)
)
− ε if gC + gL ≥ τ,

(H.4)

and to Unconditional Cooperators

π̂(eU , ga) =

{
B(gU)− c if gC + gL < τ,(∑τ

j=0 PjB(j + gU)
)
− c if gC + gL ≥ τ.

(H.5)
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H.2 Condition for Coordinated Cooperation to persist and resist invasion by Liars
In the main text, we stated that a C+D coexistence in a well-mixed population (no ho-

mophily) can resist invasion by Liars if the following condition is satisfied (Eq. 34)

B(τ)−B(τ − 1) > c.

In this section, we will prove the statement from the main text (H.2.1), and we will detail its
other interpretations. We will show that Eq. 34 also has the following meanings:

• it is a necessary condition for the strategy profile with τ contributors to be a Nash
equilibrium in the well-mixed game with untransformed payoffs (H.2.2);

• it means that Unconditional Cooperators have a positive switching gain against Uncon-
ditional Defectors when there are τ − 1 other Unconditional Cooperators, which is a
necessary but not sufficient condition for coexistence between Unconditional Cooperators
and Defectors (H.2.3); and

• it is the condition under which an all-C population can resist invasion by Liars (H.2.4).

H.2.1 Condition for a C+D coexistence to resist invasion by Liars
In this subsection, we will consider a well-mixed population (no homophily) with a pre-

existing stable coexistence between Coordinating Cooperators and Defectors, and we will show
that the condition given in Eq. 34 in the main text is the condition under which the population
can resist invasion by Liars.

Define p∗ = (p∗C , p
∗
D, 0) as the interior steady state of the C + D system, with the final

0 representing a 0 proportion of Liar types in the population at invasion. In order for the
coexistence between C and D types to resist invasion by Liars, the invasion fitness of Liars
must be negative

1

pL
ṗL

∣∣∣∣
p∗

< 0. (H.6)

The replicator dynamics for the Liar type

ṗL = pL

πL −
∑

i∈{C,D,L}

piπi

 . (H.7)

Substituting Eq. H.7 into Eq. H.6

1

pL
ṗL

∣∣∣∣
p∗

= πL|p∗ −

p∗C πC |p∗ + p∗D πD|p∗︸ ︷︷ ︸
=πC |p∗=πD|p∗

+ p∗L︸︷︷︸
=0

πL|p∗

 ,

and therefore the condition for the population to resist invasion by Liars (Eq. H.6) becomes

πL|p∗ − πC |p∗ < 0. (H.8)

Let K be the random variable denoting the number of Unconditional Cooperators k among
the (n−1) nonfocal group members. In a well-mixed population (no homophily), P[K = k | p∗]
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is binomially distributed and independent of the strategy of the focal group member. Therefore,
the expected payoff to Coordinating Cooperators is

πC |p∗ = −ε+
n−1∑

k=τ−1

P[K = k | p∗]

(
B(τ)− τ

k + 1
c

)
. (H.9)

Because the invading L type is rare and the population is well-mixed, there will only ever
be 1 Liar in the group. Recall that the Liar contributes 1 towards the quorum τ for the lottery
to take place, but the Liar does not contribute if chosen by the lottery. If the lottery takes
place, the probability that the Liar is chosen is τ/(k + 1), resulting in a public good benefit of
B(τ − 1); and the probability that the Liar is not chosen is (k + 1 − τ)/(k + 1), resuling in a
public good benefit of B(τ). Therefore, the expected payoff to the invading Liar is

πL|p∗ = −ε+
n−1∑

k=τ−1

P[K = k | p∗]

(
τB(τ − 1) + (k + 1− τ)B(τ)

k + 1

)
. (H.10)

Substituting πC |p∗ (Eq. H.9) and πL|p∗ (Eq. H.10) into the invasion-resistance condition in
Eq. H.8, the invasion-resistance condition becomes

τ

(
B(τ − 1)− (B(τ)− c)

)(
n−1∑

k=τ−1

P[K = k | p∗]

k + 1

)
< 0. (H.11)

The summation term in Eq. H.11 is positive; therefore, the condition for invasion resistance
becomes

B(τ)−B(τ − 1) > c, (H.12)

which is Eq. 34 in the main text.

H.2.2 Condition for τ contributors and n− τ defectors to be a Nash equilibrium
In this subsection, we derive the conditions under which the strategy profile with τ contrib-

utors and n− τ non-contributors is a Nash equilibrium in the well-mixed game (untransformed
payoffs) when we consider only two strategies, Unconditional Cooperator and Unconditional
Defector, and we show that Eq. 34 in the main text is a necessary condition for this strategy
profile to be a Nash equilibrium.

Let Sj be the set of all possible strategies for individual j. Let uj(sj, s−j) be the payoff to
individual j when individual j pursues strategy sj and all other players apart from j pursue
strategy profile s−j. Let s∗ = (s∗j , s

∗
−j) be a strategy profile. Then s∗ is a strict Nash equilibrium

if
ui(s

∗
j , s

∗
−j) > uj(sj, s

∗
−j) ∀sj (̸= s∗j) ∈ Sj. (H.13)

The possible strategies are Sj = {D,U}. In the situation where the focal j in s∗ is an
Unconditional Defector

s∗j = D,

s∗−j = {U, . . . , U,︸ ︷︷ ︸
τ

D, . . . , D︸ ︷︷ ︸
n−τ−1

, }

and Eq. H.13 gives
B(τ) > B(τ + 1)− c. (H.14)
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In the situation where the focal j in s∗ is an Unconditional Cooperator

s∗j = U,

s∗−j = {U, . . . , U,︸ ︷︷ ︸
τ−1

D, . . . , D︸ ︷︷ ︸
n−τ

, }

and Eq. H.13 gives
B(τ)− c > B(τ − 1). (H.15)

Eq. H.15 is equivalent to Eq. 34 from the main text. Therefore, Eq. H.15 is a necessary condition
for the strategy profile with τ contributors to be a Nash equilibrium.

H.2.3 Switching gain for Unconditional Cooperators against Unconditional Defectors
In this subsection, we find the switching gains for Unconditional Cooperators against Un-

conditional Defectors. We show that, in a group with τ − 1 Unconditional Cooperators, the
switching gain is positive when Eq. 34 from the main text is satisfied.

The switching gains for Unconditional Cooperators against Defectors, dk, are the payoff
gains an individual would receive when they switch from being a D- to U-strategist when
grouped with k U-strategists and (n − 1 − k) D-strategists. The payoff to an Unconditional
Cooperator is

πU(k) = B(k + 1)− c, (H.16)

and the payoff to an Unconditional Defector is

πD(k) = B(k), (H.17)

therefore, the switching gain is

dk = πU(k)− πD(k) = B(k + 1)−B(k)− c. (H.18)

When k = τ − 1, the condition for a positive switching gain, dτ−1 > 0, becomes

B(τ)−B(τ − 1) > c, (H.19)

which is equivalent to Eq. 34.
For the sigmoid game we consider, d0 and dn−1 are negative, dk is increasing for k < τ − 1,

reaches its maximum at k = τ − 1, and is decreasing for k > τ − 1. Therefore, by Results 3.1
and 4.1 in Peña et al. (2014), Eq. H.19 is a necessary (but not sufficient) condition for stable
coexistence between U and D-strategists.

H.2.4 Condition under which Coordinating Cooperators can resist invasion by Liars
In this subsection, we derive the condition under which a well-mixed population (no ho-

mophily) of all Coordinating Cooperators can resist invasion by Liars and show that it is
equivalent to Eq. 34 in the main text.

Define p∗ = (p∗C , 0) = (1, 0) as the strategy distribution in the all-C population where the
final 0 represents the 0 proportion of Liar types in the population at invasion. In order for the
all-C population to resist invasion by Liars, the invasion fitness of Liars must be negative

1

pL
ṗL

∣∣∣∣
p∗

< 0. (H.20)
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The replicator dynamics for the Liar type

ṗL = pL (πL − πC) , (H.21)

and therefore the condition for the all-C population to resist invasion by Liars becomes

πL|p∗ − πC |p∗ < 0. (H.22)

In the all-C population, the lottery is always held with all n members participating, τ contrib-
utors are always chosen, and the probability that an individual will be chosen as a contributor
is τ/n. Therefore, the expected payoff to a Coordinating Cooperator is

πC |p∗ = B(τ)− τ

n
c− ε. (H.23)

Because the invading L type is rare and the population is well-mixed, there will only ever
be 1 Liar in the group. The lottery always takes place. The probability that the Liar is chosen
is τ/n, resulting in a public good benefit of B(τ − 1); and the probability that the Liar is not
chosen is (n− τ)/n, resulting in a public good benefit of B(τ). Therefore, the expected payoff
to the invading Liar is

πL|p∗ =
τB(τ − 1) + (n− τ)B(τ)

n
− ε. (H.24)

Substituting the expected payoffs for C-strategists (Eq. H.23) and rare L-strategists (Eq. H.24)
into the invasion-resistance condition in Eq. H.22, the condition for invasion resistance becomes

B(τ)−B(τ − 1)− c > 0, (H.25)

which is equivalent to Eq. 34.

H.3 Coexistence of Coordinating Cooperators and Defectors
The purpose of this subsection is to show that Coordinating Cooperators can persist in a

well-mixed population (no homophily) in evolutionary coexistence with Unconditional Defectors
provided that (1) τ Coordinating Cooperators will receive a positive payoff from the game (when
we neglect cognitive cost, ε), and (2) the cognitive cost of being a Coordinating Cooperator ε
is small enough.

We assume that τ Coordinating Cooperators will receive a positive payoff from the game
when we neglect cognitive cost, ε:

Assumption 1: B(τ)− c > 0. (H.26)

First, let us consider a scenario where there is no cognitive cost to being a Coordinating
Cooperator, ε = 0 (e.g., Fig. H.5a). Let k be the number of Coordinating Cooperators among
the n−1 nonfocal members of the group. Then the payoffs to a focal Coordinating Cooperator
are

πC(k) =

{
0 if k < τ − 1,

B(τ)− τ
k+1

c if k ≥ τ − 1,
(H.27)

the payoffs to a focal Unconditional Defector are

πD(k) =

{
0 if k < τ,

B(τ) if k ≥ τ,
(H.28)
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and therefore the switching gains from D to C are

dk =


0, if k < τ − 1,

B(τ)− c if k = τ − 1,

− τ
k+1

c if k > τ − 1.

(H.29)

The gain sequence d has a single sign change, its first non-zero entry has a positive sign, and
its last non-zero entry has a negative sign; therefore, by Result 3.2.b of Peña et al. (2014),
an all-C population is unstable, an all-D population is also unstable, and there is an interior
steady state representing the stable coexistence of C and D. The result also implies that if we let
g(p) be the gain function, which is defined as the average payoff of Coordinating Cooperators
minus the average payoff of Unconditional Defectors, calculated at the population frequency of
Coordinated Cooperators being p (see Peña et al. (2014)), its maximal value g satisfies

g > 0. (H.30)

(a) no cognitive cost (b) small cognitive cost ε
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Figure H.5: An example of a gain sequence, d0, . . . , dn−1 and gaint function, g(p) for Coordinating Cooperators
versus Unconditional Defectors that illustrates the main principle behind the proof: introducing a cognitive
cost ε shifts both functions down by ε. Consequently, provided B(τ) − c > 0 and ε < g, coexistence between
C and D is possible. (a) When there are no cognitive costs to being a Coordinating Cooperator, then provided
B(τ) − c > 0, there will be one interior steady state that is stable (filled blue circle). (b) When a cognitive
cost is introduced that satisfies ε < g, then there will be two interior steady states, one stable and one unstable
(empty blue circle). Parameter values used: n = 6, τ = 3, σ = 10, c = 0.2.

Now let us consider a scenario where there is a cognitive cost to being a Coordinating
Cooperator (e.g., Fig. H.5b). We assume that the cost is not too high; specifically,

Assumption 2: 0 < ε < g. (H.31)

Compared to the ε = 0 scenario above, The effect of imposing a cognitive cost is to shift the
entire gain sequence uniformly down by ε (e.g., Fig. H.5), i.e., the gain sequence becomes

d′k =


−ε if k < τ − 1,

B(τ)− c− ε if k = τ − 1,

− cτ
k+1

− ε if k > τ − 1.

(H.32)
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The gain sequence d′ now has two sign changes and its first non-zero entry has a negative sign.
By Result 4.1 of Peña et al. (2014), the number of steady states and their signs depends on the
the maximal value of the new gain function, g′. Shifting the entire gain sequence down by ε
also shifts the gain function g′ uniformly down, and the new maximal value of the gain function
is

g′ = g − ε > 0. (H.33)

By Result 4.1.c of Peña et al. (2014): the all-C population is unstable, the all-D population
is stable, and there is one stable steady state p∗C and one unstable steady state p∗∗C satisfying
0 < p∗∗C < p∗C < 1. Therefore, a stable C+D coexistence is possible.
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I Numerical results for 8-player Coordinated Cooperation example

In this Supplement, we explore the evolutionary dynamics of the two example scenarios in
detail, and we explore how the dynamics change as homophily decreases from a high ancestral
level to a low contemporary level. We use the whole-group accounting approach for Example
1, and the payoff-matrix approach for Example 2. For both examples, we use the leader-driven
group-formation model to calculate parameter F (Eq. 1). The code used to produce these
results is available in the online repository, which we hope will provide a practical help for
future workers.

Throughout this Supplement, the evolutionary dynamics and steady states on the faces of
the tetrahedral strategy space are illustrated in the same way as in Fig. 5 in the main text.
Specifically, red dots represent unstable equilibria, and blue dots represent stable equilibria in
the subspace sub(p∗). Stability on sub(p∗) differs from local asymptotic stability of p∗ on the
whole simplex Sm in that these steady states may be invadable by new strategies not in the
population (see Supplement D.3 for details of the difference).

I.1 Example scenario 1
In example scenario 1, the parameter values are chosen such that the strategy profile with τ

contributors and n− τ non-contributors is a Nash equilibrium (Table I.12). Code to reproduce
these results can be found in scripts/sigmoid_UDCL/ and additional results can be found in
results/sigmoid_UDCL/.

Table I.12: Parameter values used for example scenario 1.

parameter value description

n = 8 Number of group members playing the game.
τ = 5 Lottery quorum and midpoint of benefits function minus 0.5.
σ = 10 Steepness of the sigmoid benefits function.
c = 0.25 Cost of contributing to the public good.
ε = 0.02 Cognitive cost of being a communicative player (C or L).
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At maximum homophily, with parameter h = 1 in the leader-driven group-formation model,
the globally evolutionarily stable strategy is Unconditional Cooperation.

h = 1

D C

LU U

U

As homophily decreases, the first event (occurring between h = 0.65 and q = 0.645) is the
appearance of a coexistence between U and C, which is a global attractor. It emerges at pU = 1
and moves away as homophily decreases.

h = 0.645

D C

LU U

U

S67



The next event is the appearance of a separatrix between L and C (occurring before h = 0.5),
which emerges near pL = 1 and moves away as homophily decreases.

h = 0.5

D C

LU U

U

At h = 0.5, the U+C coexistence is uninvadable to all other strategies.

Table I.13: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_5000.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 -0.196584 0.014948 -0.216584
0 0 1 0 0.020000 -0.040833 0.105206
0 1 0 0 -0.143905 -0.258182 0.050131
1 0 0 0 0.132027 -0.020000 0.085206
0 0.872272 0 0.127728 stable -0.212479 -0.266321
0 0.176902 0.823098 0 unstable
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The next events (occurring before h = 0.4) are the appearances of unstable steady states
between D and U (emerging at pD = 1) and between L and U (emerging at pL = 1). As
homophily decreases further, these unstable states each become paired with a stable steady
state, both emerging at pU = 1 (occurs before h = 0.3). Within the same interval, a stable
steady state appears between C and D (emerging at pC = 1), which will also become paired
with an unstable steady state as homophily decreases further.

h = 0.4 h = 0.3

D C

LU U

U

D C

LU U

U

Thus, by h = 0.3, there are 4 stable steady states in the system: U+C, U+L, C+D, and
U+D. The U+C coexistence remains uninvadable to all other strategies; the U+L coexistence
is invadable by both D and C; the U+D coexistence is invadable by invadable to C; and the
C+D coexistence is invadable by U. Thus, sequential invasions will terminate in U+C, which
remains the evolutionary endpoint.

Table I.14: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_7000.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.035176 0.068581 0.015176
0 0 1 0 0.020000 -0.116350 -0.106830
0 1 0 0 0.047010 -0.156719 0.092966
1 0 0 0 0.014863 -0.020000 -0.126830
0 0 0.800290 0.199710 unstable
0 0 0.024850 0.975150 stable 0.020000 0.059705
0 0.892269 0 0.107731 stable -0.032696 -0.138100
0 0.518106 0.481894 0 unstable

0.762992 0 0 0.237008 unstable
0.058471 0 0 0.941529 stable 0.033806 -0.020000
0.107715 0.892285 0 0 stable -0.160745 0.021924
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The next event (occurring before h = 0.27) is the appearance of an unstable steady state
on the (D, C, U) face. This unstable steady state emerges out of the C+D coexistence, which
switches the C+D coexistence from being invadable by U to being uninvadable by all other
strategies.

h = 0.26

D C

LU U

U

Table I.15: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_7400.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.074126 0.087590 0.054126
0 0 1 0 0.020000 -0.125229 -0.136153
0 1 0 0 0.081145 -0.137569 0.109483
1 0 0 0 0.001863 -0.020000 -0.156153
0 0 0.742465 0.257535 unstable
0 0 0.087433 0.912567 stable 0.020000 0.051911
0 0.881502 0 0.118498 stable -0.005512 -0.110307
0 0.569733 0.430267 0 unstable

0.999831 0 0 0 0.001870 -0.019982 -0.155995
0.703764 0 0 0.296236 unstable
0.122346 0 0 0.877654 stable 0.013946 -0.020000
0.173223 0.826777 0 0 stable -0.143651 -0.014060
0.064089 0.869981 0 0.065929 unstable
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As homophily decreases further, the unstable steady state on the (D, C, U) face moves
towards and collides with the U+C coexistence (occurs before h = 0.25), which switches the
U+C coexistence from being uninvadable by all other strategies to being invadable by D.
Simultaneously, an unstable steady state appears between C and D (emerging at pD = 1),
which now renders the all-D population uninvadable by all other strategies. Thus, by h = 0.24,
the potential evolutionary endpoints are the all-D population and D+C coexistence.

h = 0.24

D C

LU U

U

Table I.16: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_7600.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.092228 0.097804 0.072228
0 0 1 0 0.020000 -0.129042 -0.149034
0 1 0 0 0.096760 -0.128235 0.117591
1 0 0 0 -0.003282 -0.020000 -0.169034
0 0 0.715246 0.284754 unstable
0 0 0.116556 0.883444 stable 0.020000 0.047555
0 0.875868 0 0.124132 stable 0.007392 -0.096166
0 0.594324 0.405676 0 unstable

0.675320 0 0 0.324680 unstable
0.152688 0 0 0.847312 stable 0.006012 -0.020000
0.981066 0.018934 0 0 unstable
0.200252 0.799748 0 0 stable -0.134922 -0.030236
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Soon after the emergence of the D+C unstable steady state, two more unstable steady
states appear on the (U, D, C) face, emerging out of the U+D unstable-stable steady-state
pair (occurs before h = 0.2). The significant effect of the unstable steady states on the (U,
D, C) face is that, whereas previously the population at U+D was invadable by C providing
a potential route to C+D coexistence, now any population at U+D is ‘trapped’ in that state.
Thus, by h = 0.19, the potential evolutionary endpoints of an invasion sequence are: all-D,
C+D, and U+D.

h = 0.19

D C

LU U

U

Two unstable steady states also appear in the interior of the strategy space.
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Table I.17: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_8100.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.132996 0.124381 0.112996
0 0 1 0 0.020000 -0.136928 -0.176097
0 1 0 0 0.130418 -0.105742 0.135739
1 0 0 0 -0.012546 -0.020000 -0.196097
0 0 0.650451 0.349549 unstable
0 0 0.185160 0.814840 stable 0.020000 0.035670
0 0.861799 0 0.138201 stable 0.037740 -0.060665
0 0.652873 0.347127 0 unstable
0 0.114652 0.564229 0.321119 unstable
0 0.216628 0.528963 0.254409 unstable

0.604903 0 0 0.395097 unstable
0.226984 0 0 0.773016 stable -0.008372 -0.020000
0.914641 0.085359 0 0 unstable
0.255317 0.744683 0 0 stable -0.112862 -0.065413
0.555233 0.049910 0 0.394857 unstable
0.184680 0.042306 0 0.773014 unstable
0.016939 0.259279 0.497743 0.226039 unstable
0.030128 0.090624 0.541191 0.338056 unstable
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As homophily decreases further, the U+D steady-state pair move towards each other.

h = 0.15 h = 0.11

D C

LU U

U

D C

LU U

U

Table I.18: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_8500.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.160569 0.145441 0.140569
0 0 1 0 0.020000 -0.141723 -0.192644
0 1 0 0 0.150867 -0.088764 0.146490
1 0 0 0 -0.016805 -0.020000 -0.212644
0 0 0.599799 0.400201 unstable
0 0 0.238158 0.761842 stable 0.020000 0.025269
0 0.851124 0 0.148876 stable 0.060032 -0.032851
0 0.697213 0.302787 0 unstable
0 0.321853 0.442325 0.235822 unstable
0 0.067884 0.526652 0.405463 unstable

0.543884 0 0 0.456116 unstable
0.290453 0 0 0.709547 stable -0.015022 -0.020000
0.868302 0.131698 0 0 unstable
0.289673 0.710327 0 0 stable -0.095350 -0.088335
0.450182 0.094193 0 0.455625 unstable
0.200344 0.090079 0 0.709578 unstable
0.036036 0.063158 0.488808 0.411998 unstable
0.013588 0.344572 0.422645 0.219195 unstable
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When the U+D steady-state pair collide (occurs before h = 0.106), they annihilate one
another, and any population that was previously at the U+D coexistence will evolve to an
all-D population.

h = 0.106

D C

LU U

U

In summary, at h = 0.106, there are four stable steady states in the system: L+U, C+U, D,
and C+D. The L+U state is invadable by both Defectors and Coordinating Cooperators; the
C+U state is invadable by Defectors only; and both D and C+D are uninvadable evolutionary
endpoints.

Table I.19: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_8940.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.185309 0.166657 0.165309
0 0 1 0 0.020000 -0.145661 -0.205990
0 1 0 0 0.166070 -0.071335 0.152934
1 0 0 0 -0.019115 -0.020000 -0.225990
0 0 0.540376 0.459624 unstable
0 0 0.299660 0.700340 stable 0.020000 0.012549
0 0.840523 0 0.159477 stable 0.082373 -0.003921
0 0.743889 0.256111 0 unstable
0 0.484845 0.285985 0.229171 unstable
0 0.046665 0.460719 0.492616 unstable

0.825029 0.174971 0 0 unstable
0.320160 0.679840 0 0 stable -0.076739 -0.108555

S75



The next event is the appearance of an attractor-repellor pair on the (L, U, C) face (occurring
before h = 0.1031). As homophily decreases, the pair move apart and eventually collide with
another attractor-repellor pair.

h = 0.1031 h = 0.1026

D C

LU U

U

D C

LU U

U

Before the collision, the four stable steady states retain the same invasibility status as
before: L+U is invadable by both D and C; C+U is invadable by D; and both D and C+D are
uninvadable.

Table I.20: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_8969.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.186727 0.167941 0.166727
0 0 1 0 0.020000 -0.145876 -0.206703
0 1 0 0 0.166804 -0.070237 0.153140
1 0 0 0 -0.019202 -0.020000 -0.226703
0 0 0.536057 0.463943 unstable
0 0 0.304100 0.695900 stable 0.020000 0.011627
0 0.746896 0.253104 0 unstable
0 0.839877 0 0.160123 stable 0.083760 -0.002102
0 0.640449 0.152006 0.207545 stable 0.024955
0 0.530664 0.244787 0.224550 unstable
0 0.045265 0.455447 0.499289 unstable
0 0.775281 0.046997 0.177722 unstable

0.822468 0.177532 0 0 unstable
0.321944 0.678056 0 0 stable -0.075549 -0.109715
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Once the collisions have occurred (occurs by h = 0.08), the C+U coexistence becomes
invadable by Liars.

h = 0.08

D C

LU U

U

Table I.21: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_9200.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.197070 0.177534 0.177070
0 0 1 0 0.020000 -0.147413 -0.211705
0 1 0 0 0.171535 -0.061734 0.153818
1 0 0 0 -0.019695 -0.020000 -0.231705
0 0 0.496978 0.503022 unstable
0 0 0.344087 0.655913 stable 0.020000 0.003452
0 0.835001 0 0.164999 stable 0.094403 0.011896
0 0.770548 0.229452 0 unstable
0 0.028775 0.404749 0.566476 unstable

0.803342 0.196658 0 0 unstable
0.335266 0.664734 0 0 stable -0.066275 -0.118239
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The next events are the collision of the remaining repellor on the (L, U, C) face with the
attractor of L+U coexistence, and the appearance of a pair of repellors on the (D, L, C) face
(occurs by h = 0.07).

h = 0.07

D C

LU U

U

Table I.22: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_9300.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.201021 0.181299 0.181021
0 0 1 0 0.020000 -0.147985 -0.213512
0 1 0 0 0.173000 -0.058192 0.153594
1 0 0 0 -0.019817 -0.020000 -0.233512
0 0 0.474378 0.525622 unstable
0 0 0.367048 0.632952 stable 0.020000 -0.001045
0 0.780625 0.219375 0 unstable
0 0.833047 0 0.166953 stable 0.098780 0.017660

0.795757 0.204243 0 0 unstable
0.340571 0.659429 0 0 stable -0.062385 -0.121549
0.599144 0.300809 0.100047 0 unstable
0.543608 0.347154 0.109238 0 unstable
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Finally, the attractor-repellor L+U pair collide. The evolutionary endpoints in a well-mixed
population (no homophily) are all-D and a C+D coexistence.

h = 0

D C

LU U

U

Table I.23: Steady states from fixedpts_stability_sigmoidUDCL_v1_leader_driven_ngrid_9_q_10000.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

0 0 0 1 0.219861 0.199861 0.199861
0 0 1 0 0.020000 -0.150636 -0.221018
0 1 0 0 0.176250 -0.036025 0.145444
1 0 0 0 -0.020000 -0.020000 -0.241018
0 0.822535 0 0.177465 stable 0.124994 0.051688
0 0.848196 0.151804 0 unstable

0.683425 0.268518 0.048057 0 unstable
0.468771 0.450586 0.080642 0 unstable
0.753897 0.246103 0 0 unstable
0.370781 0.629219 0 0 stable -0.037835 -0.139092
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I.2 Example scenario 2
In example scenario 2, the parameter values are chosen such that the strategy profile with τ

contributors and n−τ noncontributors is not a Nash equilibrium (Table I.24). This was achieved
by reducing the steepness of the sigmoid benefits function (σ) in comparison to example scenario
2. Code to reproduce these results can be found in scripts/transmat_sigmoid_UDCL/ and
additional results can be found in results/transmat_sigmoid_UDCL/.

Table I.24: Parameter values used for example scenario 2.

parameter value description

n = 8 Number of group members playing the game.
τ = 5 Lottery quorum and midpoint of benefits function minus 0.5.
σ = 6 Steepness of the sigmoid benefits function.

c = 0.25 Cost of contributing to the public good.
ε = 0.02 Cognitive cost of being a communicative player (C or L).

At maximum homophily, with parameter h = 1 in the leader-driven group-formation model,
the globally evolutionarily stable strategy is Unconditional Cooperation.

h = 1

D C

LU U

U

S80

https://github.com/nadiahpk/homophilic-many-strategy-PGG/
https://github.com/nadiahpk/homophilic-many-strategy-PGG/


As homophily decreases, the first event (occurring before h = 0.59) is the appearance
of a pair of steady states, one unstable and one stable, between U and C. The stable U+C
coexistence is uninvadable by all other strategies, and there are no interior steady states.

h = 0.59

D C

LU U

U

Table I.25: Steady states from fixedpts_stability_transmat_sigmoidUDCL_v2_leader_driven_ngrid_9_q_4200.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

1 0 0 0 0.177464 -0.020000 0.190443
0 1 0 0 -0.192100 -0.220019 0.056601
0 0 1 0 0.020000 0.055499 0.210443
0 0 0 1 -0.271503 -0.018685 -0.291503
0 0.237578 0 0.762422 unstable
0 0.576807 0 0.423193 stable -0.294832 -0.262562
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As homophily decreases further, the two steady states separate, with the unstable steady-
state moving towards U and the stable steady-state moving towards C. The unstable steady
state collides with U and is annhilated whereas the stable steady-state persists. A separatrix
appears between L and C, emerging near pL = 1, and moves away from L and towards C as
homophily declines.

h = 0.58 h = 0.46

D C

LU U

U

D C

LU U

U

The next events are the appearances of unstable states between D and U (emerging at
pD = 1 before h = 0.4) and between L and U (emerging at pL = 1 before h = 0.36).

h = 0.40 h = 0.36
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Table I.26: Steady states from fixedpts_stability_transmat_sigmoidUDCL_v2_leader_driven_ngrid_9_q_6000.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

1 0 0 0 0.056491 -0.020000 -0.005170
0 1 0 0 -0.035833 -0.122982 0.054347
0 0 1 0 0.020000 -0.041738 0.014830
0 0 0 1 -0.076831 0.010250 -0.096831

0.986388 0 0 0.013612 unstable
0 0.253604 0.746396 0 unstable
0 0.890236 0 0.109764 stable -0.096036 -0.126183
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As homophily declines further, the next event is the appearance of a stable steady state
between C and D (occurs before h = 0.36). This C+D coexistence is invadable by U but not
by L.

h = 0.32

D C

LU U

U

Table I.27: Steady states from fixedpts_stability_transmat_sigmoidUDCL_v2_leader_driven_ngrid_9_q_6800.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

1 0 0 0 0.019101 -0.020000 -0.073095
0 1 0 0 0.036888 -0.084182 0.076929
0 0 1 0 0.020000 -0.072219 -0.053095
0 0 0 1 -0.002194 0.032532 -0.022194

0.803292 0 0 0.196708 unstable
0.093205 0.906795 0 0 stable -0.086447 0.026316

0 0.453008 0.546992 0 unstable
0 0.877209 0 0.122791 stable -0.038003 -0.080534
0 0 0.859934 0.140066 unstable
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As homophily declines further, a stable coexistence U+D emerges from pU = 1 (occurs by
h = 0.315), and this U+D coexistence is invadable by C.

h = 0.3
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LU U

U

Table I.28: Steady states from fixedpts_stability_transmat_sigmoidUDCL_v2_leader_driven_ngrid_9_q_7000.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

1 0 0 0 0.011870 -0.020000 -0.088008
0 1 0 0 0.054101 -0.075022 0.083492
0 0 1 0 0.020000 -0.078735 -0.068008
0 0 0 1 0.014919 0.039507 -0.005081

0.759456 0 0 0.240544 unstable
0.040844 0 0 0.959156 stable 0.024843 -0.020000

0 0 0.818654 0.181346 unstable
0.131519 0.868481 0 0 stable -0.078071 0.008997

0 0.872054 0 0.127946 stable -0.024848 -0.069229
0 0.500143 0.499857 0 unstable
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As homophily declines further, between h = 0.29 and h = 0.26, a repellor appears on the
(D,C,U) face near the C+D steady state and moves towards and collides with the C+U steady
state. When the repellor appears, it renders the C+D steady state uninvadable, and when it
collides with C+U, it renders the C+U steady state invadable by D.

h = 0.284 h = 0.276
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LU U

U
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U

Table I.29: Steady states from fixedpts_stability_transmat_sigmoidUDCL_v2_leader_driven_ngrid_9_q_7240.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

1 0 0 0 0.004328 -0.020000 -0.104781
0 1 0 0 0.073856 -0.064344 0.091390
0 0 1 0 0.020000 -0.085999 -0.084781
0 0 0 1 0.034552 0.048569 0.014552

0.706134 0 0 0.293866 unstable
0.097363 0 0 0.902637 stable 0.014433 -0.020000
0.171427 0.828573 0 0 stable -0.068010 -0.010663

0 0 0.769833 0.230167 unstable
0.095703 0.855105 0 0.049192 unstable

0 0.865450 0 0.134550 stable -0.009671 -0.055722
0 0.556018 0.443982 0 unstable
0 0 0.038640 0.961360 stable 0.020000 0.040190
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A separatrix appears between D and C making the all-D population an uninvadable state
(occurs before h = 0.26).

Pairs of repellors appear on the (L, U, C) and (L, C, D) faces (h = 0.232).
Two repellors also appear on the (D, C, U) face (occurs just before h = 0.232). These

repellors render the stable D+U coexistence uninvadable by C.
h = 0.24 h = 0.232
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U
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U

Table I.30: Steady states from fixedpts_stability_transmat_sigmoidUDCL_v2_leader_driven_ngrid_9_q_7680.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

1 0 0 0 -0.006389 -0.020000 -0.132326
0 1 0 0 0.106724 -0.045723 0.104933
0 0 1 0 0.020000 -0.097807 -0.112326
0 0 0 1 0.067836 0.066841 0.047836

0.959620 0.040380 0 0 unstable
0.230579 0.769421 0 0 stable -0.049669 -0.043426
0.598422 0 0 0.401578 unstable
0.210207 0 0 0.789793 stable -0.000629 -0.020000

0 0.658148 0.341852 0 unstable
0 0.852864 0 0.147136 stable 0.016532 -0.031266
0 0 0.679153 0.320847 unstable
0 0 0.134227 0.865773 stable 0.020000 0.034903

0.532484 0.225175 0.242341 0 unstable
0.428340 0.324309 0.247351 0 unstable

0 0.113620 0.576571 0.309809 unstable
0 0.230979 0.523639 0.245382 unstable

0.587834 0.010667 0 0.401499 unstable
0.207131 0.003076 0 0.789793 unstable
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As homophily declines, the separatrix on the (D, C, U) face moves away from the U-D axis,
and the pair of steady states between U and D move towards one another. When the steady
states collide (occurs by h = 0.193), they annhilate one another, and a population that was at
the U+D coexistence moves to an all-D state.

h = 0.2 h = 0.194
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U
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LU U

U

As homophily decreases further, the repellor on the (L, U, C) face moves towards the
C+U coexistence. Once it collides (occurs before h = 0.173), it renders the C+U coexistence
invadable by L.

h = 0.18 h = 0.174
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U
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As homophily declines further, the pair of steady states between L and U collide. The next
major event occurs when the repellor between L and C collides with C and a repellor on the
(L, D, C) face collides with the stable steady state C+D (occurs before h = 0.1). When the
repellor collides with C, the all-C population becomes invadable by L, and when the repellor
collides with C+D, the C+D coexistence becomes invadable by L.

h = 0.12 h = 0.08
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Table I.31: Steady states from fixedpts_stability_transmat_sigmoidUDCL_v2_leader_driven_ngrid_9_q_9200.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

1 0 0 0 -0.019722 -0.020000 -0.196084
0 1 0 0 0.171794 0.007546 0.121187
0 0 1 0 0.020000 -0.125110 -0.176084
0 0 0 1 0.152746 0.133132 0.132746

0.793923 0.206077 0 0 unstable
0.353106 0.646894 0 0 stable 0.006873 -0.124494

0 0.814790 0 0.185210 stable 0.091035 0.044190
0.744438 0.208122 0.047441 0 unstable
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The final even is when the repellor on the (L, U, C) collides with the unstable steady state
between D and C, resulting in dynamics that are qualitatively similar to that of a well-mixed
population (no homophily).

h = 0.04 h = 0
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Table I.32: Steady states from fixedpts_stability_transmat_sigmoidUDCL_v2_leader_driven_ngrid_9_q_10000.csv

steady state p∗ stability invasion fitness of
p∗D p∗C p∗L p∗U on sub(p∗) D C L U

1 0 0 0 -0.020000 -0.020000 -0.211683
0 1 0 0 0.176250 0.027456 0.106653
0 0 1 0 0.020000 -0.132302 -0.191683
0 0 0 1 0.177263 0.157263 0.157263

0.744491 0.255509 0 0 unstable
0.388576 0.611424 0 0 stable 0.027862 -0.148455

0 0.802645 0 0.197355 stable 0.118837 0.072508

S89



J Numerical tractability by reducing the number of strategies considered

As group size and number of strategies increases, there is a combinatorial increase in the
number of group-composition probabilities that must be specified in order to parameterise the
model. This is somewhat ameliorated by our approach, where we parameterise the problem in
terms of the probabilities of family-partition outcomes rather than strategy-composition out-
comes. However, the combinatorial nature of the problem is intrinsic, and ultimately constrains
the size of the problem that can be solved.

First, let us compare the number of strategy compositions to family compositions. The
total number of possible whole-group strategy compositions ga is (Jensen and Rigos, 2018)

(n+m− 1)!

n!(m− 1)!
, (J.1)

which grows rapidly with group size and number of strategies. Therefore, if a model is param-
eterised in terms of the probabilities of different group strategy compositions, the number of
probabilities that must be specified also grows rapidly (dashed red line, Fig. J.6). In contrast,
if strategy composition is determined genetic homophily only, then the model can be parame-
terised in terms of the probabilities of different family structures, which are fewer in number.
The total number of possible family partition structures is equal to the partition number, which
grows comparatively slowly (blue line, Fig. J.6).

However, to obtain the dynamics ∆p, one must still evaluate the payoffs for each possible
group strategy composition given the family partition structures. This was achievable in our
example because we modelled a scenario where the number of strategies was modest (i.e., up
to m = 4 strategies used in our examples, solid red line, Fig. J.6). Consequently, the number
of possible group strategy compositions had a similar magnitude to the partition number (true
for group sizes up to approximately n = 30).

Figure J.6: An example of how the
number of whole-group strategy com-
positions (red) and family partition
structures (blue) increases as group size
increases.
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K General class of homophilic group-formation models under weak selection

The type of homophilic group-formation model we use (Kristensen et al., 2022) assumes
that group formation depends only on family relationships and is independent of individuals’
strategies. We assume that the probability distribution of family partition-structure probabili-
ties {Fq} is independent of the strategy composition of the group. However, our approach can
be applied to a broader class of homophilic group-formation models, where the family structure
depends on the strategies, if one makes two additional assumptions. First, one assumes δ-weak
selection, i.e., δ → 0. Second, one assumes that, under neutrality δ = 0, the group formation
probability agrees with what we have derived in our paper. Then, under weak selection, the
dynamics can be approximated using our approach.

To demonstrate the idea, we first bring out selection-strength term δ from Eq. 7,

∆px ∝ δ Cov[G0,x,Π0], (K.1)

which is of order δ. This renders Eq. 23, from the accounting based on whole-group composition,
as

∆px ∝ δ
∑
ga∈Ga

(
ga,x

n
π̂(ex, ga)− px

m∑
i=1

ga,i

n
π̂(ei, ga)

)
P[Ga = ga], (K.2)

which is again of order δ. Here P[Ga = ga] is the probability of the whole-group strategy
composition is ga. In a general class of models, P[Ga = ga] may not agree with ours, but when
we perform a Taylor expansion of P[Z = z] around δ = 0, we have

P[Ga = ga] = P[Ga = ga]
(0) + δ P[Ga = ga]

(1) +O(δ2), (K.3)

and from our assumption above, P[Ga = ga]
(0) agrees with ours. Putting Eq. K.3 into Eq. K.2,

we obtain

∆px ∝ δ
∑
ga∈Ga

(
ga,x

n
π̂(ex, ga)− px

m∑
i=1

ga,i

n
π̂(ei, ga)

)
P[Ga = ga]

(0) +O(δ2). (K.4)

Note that terms of order δ and higher in Eq. K.3 are all absorbed in the O(δ2) term in Eq. K.4.
Therefore, as long as we are interested in a weak selection regime, |δ| ≪ 1, one can still use our
formula as an approximation, where errors are up to O(δ2).
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L Overview of the code repository

Fig. L.7 provides an overview of the contents of the Github repository:
github.com/nadiahpk/homophilic-many-strategy-PGG/. The repository has been archived with
the Zenodo DOI: 10.5281/zenodo.14991697.

The best place to start is with the quickstart tutorials in the tutorials directory. From
there, readers who are interested in using the whole-group accounting should refer to the worked
examples in the sigmoid_UDCL directories, and readers who are interested in using the trans-
formed payoff matrix approach should refer to the worked examples in the transmat_sigmoid_UDCL
directories.

repository

functions

family partn prob.py (calculate family partition probabilities Fq)

model base.py (base class for whole-group accounting)

symbolic transformed.py (helpful functions for symbolic analysis of transformed payoff matrix)

tetraplot4class.py (plotting functions)

transmat base.py (base class for other-member accounting using transformed payoff matrix)

members recruit comb term (combinatorial terms needed to calculate partition probabilities for members-recruit group-formation model)

results

compute time (how computation time varies with problem size)

partn2prob (matrices of coefficients and powers to calculate group composition probability distribution)

related2partprob (matrices to convert from partition probabilities Fq to relatedness coefficients rρ)

sigmoid UDCL (Coordinated Cooperation example scenario 1 using whole-group accounting)

fixedpts stability sigmoidUDCL v1 leader driven ngrid 9 q *.csv (table of steady states, their stability, and their invasibility)

tetnet sigmoidUDCL v1 leader drivenC D L U q *.pdf (plot of evolutionary dynamics on the faces of the tetrahedral state space)

threshold UDCL (quickstart example to accompany tutorial)

transmat sigmoid UDCL (Coordinated Cooperation example scenario 2 using transformed payoff matrix)

fixedpts stability transmat sigmoidUDCL v2 leader driven ngrid 9 q *.csv (table of steady states, their stability, and their invasibility)

tetnet transmat sigmoidUDCL v2 leader drivenC D L U q *.pdf (plot of evolutionary dynamics on the faces of the tetrahedral state space)

scripts

compute time (how computation time varies with problem size)

partn2prob (matrices of coefficients and powers to calculate group composition probability distribution)

related2partprob (matrices to convert from partition probabilities Fq to relatedness coefficients rρ)

sigmoid UDCL (Coordinated Cooperation example scenario 1 using whole-group accounting)

calc fixedpts sigmoidUDCL v1.py (find steady states)

plot tetnet sigmoidUDCL v1.py (plot dynamics on the face of the tetrahedron at selected homophily levels)

sigmoidUDCL model.py (extends model base class by specifying the payoffs)

threshold UDCL (quickstart example to accompany tutorial)

transmat sigmoid UDCL (Coordinated Cooperation example scenario 2 using transformed payoff matrix)

calc fixedpts sigmoidUDCL v2.py (find steady states)

plot tetnet transmat sigmoidUDCL v2.py (plot dynamics on the face of the tetrahedron at selected homophily levels)

sigmoidUDCL model.py (extends model base class by specifying the payoffs)

tutorials (tutorials in Python Jupyter notebooks)

Quickstart Tutorial Coordination threshold game.ipynb (whole-group accounting)

Quickstart Tutorial Symbolic Transformed Matrix.ipynb (symbolic analysis of transformed payoff matrices)

Quickstart Tutorial Transformed payoff methods.ipynb (other-member accounting using transformed payoff matrix)

requirements.txt (to create matching Python virtual environment)

Figure L.7: Overview of the contents of the Github repository.
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