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Abstract: Extinction is a key issue in the assessment of global biodiversity. However, many extinction rate
measures do not account for species that went extinct before they could be discovered. The highly developed
island city-state of Singapore has one of the best-documented tropical floras in the world. This allowed us to
estimate the total rate of floristic extinctions in Singapore since 1822 after accounting for sampling effort and
crypto extinctions by collating herbaria records. Our database comprised 34,224 specimens from 2076 native
species, of which 464 species (22%) were considered nationally extinct. We assumed that undiscovered species
had the same annual per-species extinction rates as discovered species and that no undiscovered species remained
extant. With classical and Bayesian algorithms, we estimated that 304 (95% confidence interval, 213-414) and 412
(95% credible interval, 313-534) additional species went extinct before they could be discovered, respectively;
corresponding total extinction rate estimates were 32% and 35% (range 30-38%). We detected violations of
our 2 assumptions that could cause our extinction estimates, particularly the absolute numbers, to be biased
downward. Thus, our estimates should be treated as lower bounds. Our results illustrate the possible magnitudes
of plant extirpations that can be expected in the tropics as development continues.

Keywords: biodiversity loss, generalized fiducial inference, historical extinctions, inferred extinctions, South-
east Asia, species-area relationship, undescribed extinctions, undescribed species

Tasa de Extincion de Plantas Descubiertas y No Descubiertas en Singapur

Resumen: La extincion es un tema importante para la valoracion de la biodiversidad global. Sin embargo,
muchas medidas de la tasa de extinciéon no consideran a las especies que se extinguieron antes de que
pudieran ser descubiertas. Singapur, la ciudad-estado islena altamente desarrollada, tiene una de las floras mejor
documentadas del mundo. Esto nos permitié estimar la tasa total de las extinciones floristicas en Singapur desde
1822 después de considerar el esfuerzo de muestreo y las criptoextinciones cuando recopilamos los registros de
herbarios. Nuestra base de datos incluy6 34,224 especimenes de unas 2,076 especies nativas, de las cuales 464
especies (22%) estaban consideradas como extintas a nivel nacional. Asumimos que las especies no descubiertas
tuvieron la misma tasa anual de extincién por especie que las especies descubiertas y que ninguna especie
no descubierta permanecia en existencia. Con algoritmos clasicos y bayesianos, respectivamente, estimamos
que 304 (95% IC 213-414) y 412 (95% IC 313-534) especies adicionales se extinguieron antes de que fueran
descubiertas; las estimaciones correspondientes de la tasa de extincion total fueron 32% y 35% (rango de
30-38%). Detectamos violaciones en nuestras dos suposiciones que podrian causar que nuestras estimaciones
de extincion, particularmente los nimeros absolutos, tuvieran un sesgo hacia abajo. Por lo tanto, nuestras
estimaciones deberian ser tratadas como limites inferiores. Nuestros resultados ilustran las magnitudes posibles
de las extirpaciones de plantas que pueden esperarse en los tropicos conforme el desarrollo continta.
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Introduction

Globally, and especially in the tropics, many species
remain undiscovered, whereas known and unknown
species continue to go extinct (Costello et al. 2013).
This is also true on national and regional scales. Compre-
hensive analyses for regions with long survey histories
and thorough records are invaluable for shedding light
on such processes.

The island city-state of Singapore (103°50'E, 01°20'N;
originally 520 km?; currently 724 km? due to land
reclamation; population 5.64 million) has been used as
a case study of tropical biodiversity loss (Corlett 1992;
Turner et al. 1994). It is one of few developed countries
in the tropics. Since British colonization in 1819,
nearly all its original forest cover has been destroyed,
although substantial regrowth has occurred. Primary
forest currently occupies 0.28% of its landmass. Forested
area (primary, old and young secondary, mangrove,
and freshwater swamp) totals 22.47% (Yee et al. 2011).
Fortunately, the biota of Singapore, especially plants,
has been relatively well documented. Collections began
soon after 1819, and tens of thousands of specimens are
stored in local and international herbaria.

Documenting historical species extinction presents
2 challenges: inferring that a known species is extinct
and accounting for species that went extinct before
they could be discovered. Depending on data and
resources available, there are many ways to infer
extinction of known species, including heuristics (e.g.,
Davison et al. 2008), combined extinction risk metrics
and expert judgement (e.g., Szabo et al. 2012), and
statistical analyses of detection records (e.g., Solow
2005). Currently, multiple models are combined in a
cost-benefit framework to categorize species (Akcakaya
et al. 2017). The extinction of undiscovered species has
received comparatively less attention.

Although extinction of undiscovered species may have
a large effect on extinction rate estimates (Hawksworth
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& Cowie 2013), they are difficult to account for. It
is simplest to assume that the taxonomic group of
interest has the same extinction rate as another better-
known group (e.g., extinction rate of birds applied to
insects [Dunn 2005]). Another approach is to estimate
original species richness based on species composition
nearby in relatively undisturbed areas (e.g., Brook et al.
2003; Alcala et al. 2004). Alternatively, a statistical or
phenomenological relationship can be used (Turner et al.
1994; Pitman et al. 2002) (e.g., a power-law relationship
[Preston 1962] between species richness and habitat
area remaining [e.g., Turner et al. 1994]). Where
detailed records exist, a mark-recapture-like method on
specimen attributes has been used (Pimm et al. 1994;
Duncan et al. 2013). If one assumes extinction and
discovery rates are constant over time, a parametric
statistical model may be used (Tedesco et al. 2014).

Chisholm et al. (2016) introduced a nonparametric
method for estimating undiscovered extinctions based
on the assumption that extinction probabilities of undis-
covered and discovered species are equal within each
year. We used 2 algorithms to obtain interval estimates
from this model, explored the model’s assumptions,
and applied it to records of vascular terrestrial plants in
Singapore.

Methods

Data and Discovered Species

Electronic records of plant specimens from Singapore
were collated and resolved to create a database of
native vascular plants (Supporting Information). Species
names were resolved with respect to synonymy and
redeterminations. Unresolvable names and records
without species-specific names, collection year, or
collector name were removed.
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Table 1. A hypothetical historical record and example calculations of cumulative probability of extinction P (see text). The two undiscovered cases are two
different potential realizations of outcomes that are consistent with the historical record but differ by the number of extant undiscovered species remaining

(marked *).
Year t
0 1 2 Calculations of P
Historical record
discovered extant S, 100 250 300
discovered extinct E, 0 50 100
discoveries §; 200 100 -
Calculations
extinction rate u, 0.5 0.2 - 1-(1-05)1-02)=0.6
Assuming U, =0
undiscovered extant U, 650 125 0
undiscovered extinct X, 0 325 350 105550 = 0.6
Assuming U, = 100 '
undiscovered extant U, 900 250 100
undiscovered extinct X, 0 450 500 100390 = 0.6

Experts in plant identification for field research and
conservation classified species as extant or extinct.
Unclassified species that had not been collected within
the past 30 years were designated extinct, in keeping
with standard practice for plants (e.g., Chong et al.
2009). For other species collected within the past 30
years, we assessed current status in Singapore with the
Solow (1993) method, which we chose for its simplicity,
and a collection effort correction (McCarthy 1998)
(Supporting Information). Seventy species had p < 0.1
(null hypothesis that they are extant rejected); however,
many of these were known to be common. Therefore,
experts were consulted a second time to reassess and
classify each of the 70 species (Supporting Information).

The method we used to fit redetection effort, c(?),
to the detection records also fitted species’ intrinsic
redetection probabilities:

_ Zt Ip(,t)
Zte’l} c@®’

where Iz(7,t) = 1 if species i was redetected in year ¢
or Ix(i, t) = 0 if not, and T; is the set of all years that the
species was known to be extant and therefore available
to be redetected. A species’ r; reflects all factors that
influenced its relative propensity to be collected, such
as conspicuousness, abundance, and research interest.

@M

i

Simplified extinction rate example

A naive way to estimate extinction rates is to divide the
current number of extinct species by the total number
of species. Given the hypothetical historical record in
Table 1, this gives 100/(300 + 100) = 0.25. Chisholm
et al.’s (2016) method improves on this by accounting
for species discoveries and temporal fluctuations in
extinction rate. The extinction probability is 1 minus the
cumulative probability of persistence. For the example

in Table 1, this gives P=1— (1 — 0.5)(1 — 0.2) = 0.6,
which is substantially higher than the naive estimate.
Calculating the cumulative persistence probability
effectively accounts for species that went extinct before
they were discovered, provided they had the same ex-
tinction rates as discovered species. Historical numbers
of undiscovered, extinct species can then be estimated
by working backward. For the example in Table 1, as-
suming no undiscovered species remain extant, U, = 0,

then in previous vyears U; =100/(1 —0.2) =125
and Uy = (125 + 200)/(1 —0.5) = 650. Then, the
total number of species Ny = Uj+ So =750, and

the total number of undiscovered extinctions X, =
No — 8> — E; — U, = 350. This recovers the total extinc-
tion rate: (E + X3)/Np = (100 + 350)/750 = 0.6 = P.
Alternatively, if we assume U, = 100, then U, = 900,
X; =500, and again (100 + 500)/1000 = 0.6 = P.
With this method, the number of undiscovered ex-
tinctions has a linear relationship with the number
of undiscovered extant species in the current year 7T
Xr = @PSr +Er +Ur) —Er)/(1 —P). This example
simplifies the problem by using the observed species
extinction rates directly. A more complete description
would infer confidence intervals on the estimates.

SEUX model

The SEUX model (Chisholm et al. 2016), which we name
for its four variables, tracks the number of species in
each year ¢ in 1 of 4 states: discovered and extant, S;;
discovered and extinct, E;; undiscovered and extant,
U;; and undiscovered and extinct, X;. The time series
S=C,...,87) and E = (K, ..., Er) are known from
data (e.g., herbaria records), but U = (U, ..., Ur) and
X = (Xop, ..., Xr) are unknown. The ultimate goal is to
infer the total number of undiscovered extinctions, X; .
Within each year, species can transition from extant
to extinct (§ - E or U — X) or undiscovered to
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Figure 1. The SEUX model showing (a) possible states and transitions and a bypotbetical scenario with (b) a
whole time series with variables and (c¢) the operation of the bypergeometric model within a time step. Within
each time step, it is assumed that survival or extinction occurs before discovery, and survival is modeled as a
random draw in an urn model. The scenario shown bas no undiscovered extant species remaining at the end of
the observation period, Ur = 0. If Uy is known, then ¢r_, can be calculated as shown in (b).

discovered (U — §). We assumed a species discovered
in a particular year would not go extinct in that same
year (i.e., transition U to E not permitted), which is
equivalent to assuming that the process of survival
and extinction precedes discovery within each year
(Fig. D).

The initial conditions were S, observed, Ey = 0, U,
unknown, and X, = 0. Over the observation period

t=1,...,T, the variables were updated as follows:
St =W+ A, (@)
E=FE 1+ 8-1—WY (6))
U =D 1 — Ary, (€))
X=X+ U1 — <Dt—l, (©))

where W, ; is the number of surviving discovered
species (observed), ®,_; is the number of surviving
undiscovered species (unobserved), and A;_; is the
number of species discovered (observed) in the previous
year.

The key assumption is that extinction probabilities
in each vyear, u,, are the same for discovered and
undiscovered species. We also assumed a discovery
probability, v, for each year f. Therefore, the random
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variables above are binomially distributed:

W, 1~ Bi (St—l; 1 _Mz—l)a (6)
Dy ~Bi(U—1, 1 — 1) @)
Ar—1 ~Bi(¢—1, 1), ®

where u and v are vectors of unknown parameters.

Let Ny =&, 1 +V¥,_; =U;,+ S, be the total num-
ber of species that survive to a given year. Be-
cause ¥,_; and &, ; are independent and share
parameter 1 — p;—;, N; is binomially distributed and
P | p,ng=U+ S) = HtT:IP(nZ | -1, s—1).  The
number of discovered (or undiscovered) survivors at
each time step is hypergeometric with sample size ;.
So Egs. 6 and 7 can be replaced with

N, ~Bi(r-1, 1= py-1) ©)

ny — &,y =¥ ~ Hyp (”t—l, St-1, nt) . ao

Thus, the joint probability of the data conditional on
nand v is

PavS W =[]T0 Wit | S—D Py (S, | Yim),
! an
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where
(Stl ) (”tl - Stl)
Y1 n— Yy
N1 '
ny

PVt—l’nt (St | I/It_l) - (gl: : ztt:ll ) 1);‘7711//’ 1(1 - vt—l)nt_St‘
13

Equation 12 is the probability of obtaining a number
of discovered extant species surviving from year £ — 1
to year t (Y—1) given the number of discovered extant
species inyear t — 1 (S;_1). Equation 13 is the probability
of obtaining the number of discovered species in year ¢
after accounting for discoveries during the last year and

Gr-1.

P”t 1.1 (wtfl | Stfl) =

a2

Algorithms to Infer Undiscovered Extinctions

To estimate the total number of undiscovered extinct
species, Xy, Chisholm et al. (2016) assumed that the
number of undiscovered species extant in the present
day, Uy, was known. Below, we devised algorithms
to obtain classical confidence intervals for X;, which
likewise treat Uy as known, and Bayesian credible
intervals, which incorporate a Uy prior. Both methods
yield interval estimates for U, from which intervals for
X are calculated. We introduced the parameter w to
explore the model’s sensitivity to the assumption that
extinction probabilities in each year are the same for
discovered and undiscovered species.

Classical Confidence Intervals

Classical confidence intervals for U can be estimated
using the quantiles of a large sample from its confidence
distribution (Xie & Singh 2013). We sampled a candidate
confidence distribution with a step-by-step algorithm,
which started with the Ur assumption and worked
backward in time, sequentially sampling each U,_;
conditional on components in later years (c.f. example
in Table 1). The algorithm was derived using the
generalized fiducial approach (Hannig et al. 2016). The
statistical model implied a data-generating algorithm,
which we inverted to obtain a fiducial distribution for U.

The likelihood in Eq. 11 translates directly into a
data-generating algorithm. Let us define the cumulative
distributions

Bn,,n,“ (1//t7 St) =1- Pn,,n,“ (qlt =< wz | St) (14)
and
Cy, s (St+1, 1//t) =1-P, ., (St+1/ <841 | lﬂz), as

which correspond to Eqgs. 12 and 13, respectively.
Then, given parameters n, v, a sample S, ¥ can be

obtained with the following algorithm:
Initialise S,
Fort=0...T -1
a; < rand01()

/A «~ B!

(R UES

(a1, 80

o, < rand01()
(@2, Y1) 16

The inverse functions correspond to sampling from
discrete distributions (Lemieux 2009).

The data-generating algorithm can be inverted to
sample n given S and ¥ observed:

—1
St+1 <~ C\}t‘n[+]

initialize Ny = Ur + Sr
Fort=7T—-1...0

o < rand01()

n; <« B\Z,I.,St (a, ntﬂ) a7

The sample U can be calculated from n (U; = n; — S;)
or by rearranging the inverse function to sample U
directly. We took the latter approach. We replaced
By, n,., (s, S¢) with the equivalent formulation

Hy v, (W, $)=1=Pyy,, (W =¥ 18), (A8

where
(St—l ) ( []1_1 )
'(ﬂt71 l/t+St_'(//t 1

St-1+ Ui
S+ U
as
Then, we obtained a sample U with the following

algorithm:

Py o, (Vi1 1Si1) =

initialize Ur
Fort = T—-1...0
o < rand01Q)
Uy < Hy's (o, Upsi) 20)

We used a mid-P correction to account for data
discreteness (Supporting Information). Via repeated
sampling of U as described above, a probability function
hs y(U) is implicitly defined, which is a generalized
fiducial distribution for U'.

In general, generalized fiducial inference can be used
to obtain a parameter distribution, following which
the quality of the procedure is evaluated, for example,
with simulations (Hannig 2013). Our algorithm (20)
performed well in simulations, producing U, confidence
intervals with coverage that matched or exceeded the
nominal value for a wide range of u and v scenarios (Sup-
porting Information). To formally prove the algorithm
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is correct, we would need to prove that Hy, ,,, (¥, S)
combined with the discreteness correction satisfies all
technical requirements of a confidence distribution.
Then, our algorithm would be equivalent to the step-by-
step approach of Veronese and Melilli (2018).

To quantify the effect of the assumption that undiscov-
ered and discovered species have equal survival proba-
bilities, we introduced their odds ratio as a parameter

()
Mut

w=—-—:, @D
1—pst
( st )

where ug,; and pu,, are the extinction probabilities for
discovered and undiscovered species, respectively, and
w is assumed constant in time. Then Eq. 19 is replaced
with Fisher’s noncentral hypergeometric distribution:

St-1 U1 WUeHS =Vt
Y Ui+ 8 — ¥
gmas [ Ur-1 Si-1 o
V=Vmin y th + St -y

Pmin = max (0, 8; +U; — ;1) , and

Py, v, (%715;71) =

Vmax = min (S, + T;, U,_1) . 22

Setting w = 1 in Eq. 22 retrieves Eq. 19, v < 1 means
the extinction probabilities of undiscovered species are
higher than discovered species, and w > 1 means they
are lower. We explored the effect of w on the results of
the classical inference.

Bayesian Credible Intervals

We conducted our analysis in a Bayesian framework and
used Markov chain Monte Carlo (MCMC) sampling with
a Metropolis-within-Gibbs sampler (Gelman et al. 2004).
The conditional dependency between the unobserved
variables has a linear structure; therefore, a Gibbs
sequence is obtained by sampling sequentially from

o) ~ Py (#1600

o< Py (627 100) P (00 10P). @3

where j is the sample number, the relationship
¢r—1 = U + S — Y1 links unknown parameters, and
probabilities on the right side are calculated by rewriting
Eq. 12 as a function of ¢, and U; (details in Supporting In-
formation). A sampling distribution must also be defined
at the end points of the chain. We imposed a uniform
prior on U and, to match the default setting for the clas-
sical intervals above, we assumed U, = 0. Alternatively,
an informative prior for Uy can be sampled instead.

Two independent chains were monitored for conver-
gence with trace plots and the Gelman-Rubin conver-
gence diagnostic (Ié < 1.1 for all U; [Gelman & Shirley
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2011]); a burn-in of 15,000 iterations was consequently
discarded. To ensure samples were sufficiently large,
we verified that: the combined sample size exceeded
the minimum multivariate effective sample size for 95th
percentile bounds with a tolerance of ¢ = 0.1 for every
U;; the multivariate MCMC SE on the mean and 95th
percentile bound estimates was small relative to the SD
in the posterior (Vats et al. 2017); and the posterior distri-
butions produced by the two chains were visually similar.

Time Step Size and Time Range of Data

To match most herbaria records, a natural time step
length for the SEUX model is 1 year; however, this choice
is arbitrary and influences model predictions. For exam-
ple, one could arbitrarily decrease the time step length
and thus increase the number of time steps in which no
discovered extinctions occur. Because the model allows
undiscovered extinctions to occur in time steps with no
discovered extinctions, this would arbitrarily increase to-
tal extinction rate. To avoid this, we required that every
time step have at least 1 discovered extinction. Years
with no discovered extinctions were combined with
later years within a time step, so time step lengths var-
ied. This procedure may also provide a rough method for
accounting for unevenness of collection effort over time.

The starting date chosen for the time series also
influences the model results due to the small sample size
effect. The decision involves a trade-off between infer-
ring extinctions farther back in time versus reliability of
those estimates. The model itself can be used to explore
the effects of that decision. We chose a start date of 1822
because it coincides with the first extensive collection
of plants in Singapore (Burkill 1927) and by that time
183 species had been collected.

Results

Data and Discovered Species

We collated 34,224 records of plants in Singapore.
Periods of intensive collection were 1822, the 1890s, and
the 1990s and 2000s. Collection rates were low during
WWII and the early 1980s. The cumulative number of
species discovered has not yet plateaued (Fig. 2).

The fitted redetection effort reflected collector activity
and WWII (Fig. 3a). Effort generally increased through
the last century, except for recent years, for which col-
lections are yet to be entered into databases. The distri-
bution of species’ intrinsic redetection probabilities was
bimodal (Fig. 3b). The relationship of average intrinsic re-
detection probability to year of discovery was U-shaped,
gradually declining over the last 2 centuries but rapidly
increasing again after 1980 (Supporting Information).
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Figure 2. The cumulative number of (a) specimens, (b) species, and (c) families in the combined collections
database of plant species of Singapore. The complete database of species detection records is in Supporting

Information.
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Figure 3. The (a) fitted spline of redetection effort over time for Singapore plants, c(t), and (b) the distribution of
inferred species’ intrinsic redetection probabilities (r;) (equation in Supporting Information), each of which gives
the number of redetections of a species divided by the total redetection effort over its Rnown lifetime. For this
figure, species are presumed extant if they are designated as common in Chong et al. (2009), if they are judged to
be extant by experts, or if they were last collected after 1985. Otherwise, they are presumed extinct. The list of
species and their corresponding redetection probabilities are in Supporting Information.

Of the 2076 plant species included in the detection
records, 464 were inferred extinct (Fig. 4a), for an
estimated discovered extinction rate of 22% (Table 1).

Extinction of Undiscovered Species and Total Extinction Rate

Assuming that discovered and undiscovered species have
equal extinction probabilities within a time step, and
assuming that no undiscovered extant species remain
in the present, then the 2 algorithms estimated that
304 (95% confidence interval, 213-414) and 412 (95%
credible interval, 313-534) undiscovered extinctions
have occurred since 1822 (Fig. 4a), with the Bayesian
method giving the higher estimate. The total extinction
rate from both methods was higher than the naive
estimate but lower than that of a previous study of
Singapore plants (Brook et al. 2003) (Table 2).

As expected, the estimated total extinction rate
increased as the survival probability of undiscovered

species was experimentally decreased via the parameter
o (Fig. 4b). An odds ratio of w = 0.17 was required to
match Brook et al.’s (2003) high estimate (Supporting
Information). The total extinction rate estimate was not
sensitive to random species deletions from the record
or variation in the current number of undiscovered
extant species (Supporting Information). However, the
estimated absolute number of undiscovered extinct
species increased as Uy increased (Fig. 4c & Supporting
Information).

Discussion

Extinction Rates in Singapore and Implications for
Southeast Asia

We collated a rich botanical data set from 2 centuries
of plant collections and showed how the data can
be used to estimate total extinction rates. Accounting
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Figure 4. The (a) SEUX model estimates for Singapore plants given the default parameter values w = 1, Ur = 0,
and (b and c) responses of the estimates to variation in those parameters (solid lines, mean values; shading, 95%
confidence or credible intervals from classical or Bayesian inference). Code is available in Supporting Information.

Table 2. Estimates (95% CI) of extinction rates for plants in Singapore from this study and previous studies.

Description and source Total Extinct Extinct (%)
Discovered species only
Turner et al. 1994; Brook et al. 2003 2277 594 26
Chong et al. 2009 2145 639 30
This study 2076 464 22
Total: discovered + undiscovered
Brook et al. 2003 6549 4866 74
This study: classical 2380 (2289,2490) 768 (677, 878) 32 (30, 35)
This study: Bayesian 2488 (2389,2610) 876 (777, 998) 35 (33, 38)

solely for discovered plant extinctions gave an estimated
extirpation rate of 22% over 200 years. Accounting for
undiscovered plant extinctions as well led to higher
total extinction rate estimates of 32-35% (total range
30-38%) (Table 2). The uncertainty range was moderate,
which reflected the difficulty of inferring undiscov-
ered extinctions even under our model’s simplifying
assumptions. Nevertheless, these numbers are similar
to the estimates for Singapore birds (Chisholm et al.
2016). Extrapolating our numbers to Southeast Asia
under projected deforestation rates (Brook et al. 2003;
Chisholm et al. 2016), we estimated that 17-18% of
plant species will be extirpated regionally by 2100
(for comparison, 28-33% of plant species are currently
classified as threatened [Joppa et al. 2010]).

Although our extinction estimates are high, they
are much lower than Brook et al.’s (2003) estimate
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of 74% Singapore plant extinctions in the present
day and 46% regional plant extinctions by 2100. The
discrepancy between our estimate and Brook et al.’s
(2003) is attributable to their extreme assumption that
the original species assemblage in Singapore was similar
to that of comparable ecosystems throughout Peninsular
Malaysia—an area over 100 times the size (Jain et al.
2018). This assumption violates one of ecology’s few
laws: the species-area relationship (Lawton 1999;
Lomolino & Weiser 2001). If region A has an area that is
1% of region B, then an empirical rule of thumb (a power-
law species-area relationship with an exponent z = 0.2
to 0.3) is that region A will have 60-75% fewer species
than region B. Brook et al.’s (2003) method attributes this
portion of difference in species richness to extinctions
rather than a regular manifestation of the species-area re-
lationship. Their method may have further overestimated
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Singapore’s historic species richness because Singapore
(an island) is partially isolated from the mainland
species pool and Peninsular Malaysia spans over 5° of
latitude, whereas Singapore spans only a fraction of a
degree.

Are our estimated plant extinction rates in Singapore
consistent with ecological theory? Based on the species-
area relationship, if the forested area is reduced to
2.83% of its original extent (current extent of primary,
old secondary, mangrove, and freshwater swamp [Yee
et al. 2011]), one would expect roughly 51-66% of the
species to have gone extinct. Why have these high rates
of extinction not been observed? Turner et al. (1994)
performed a similar calculation for Singapore plants
and suggested that higher theoretical rates were not
observed because extinction debt has not yet been paid.
Although we agree extinction debt remains, this does
not explain the discrepancy because the species-area
relationship itself ignores extinction debt. We suggest
2 more likely explanations. First, traditional species-
area relationships implicitly assume that remaining
habitat is contiguous (Pereira et al. 2012; Chisholm et al.
2018), whereas Singapore’s remnant forest is highly
fragmented and thus captures some beta diversity. When
fragmentation is accounted for, theoretical estimates of
tree species extinctions in Singapore accord well with
reality (Chisholm et al. 2018). A second explanation
is that almost one-fifth of Singapore contains young
secondary growth (Yee et al. 2011), which harbors a
substantial proportion of the original species.

Further plant extinctions can be expected in Singa-
pore. The extinction curve has not plateaued (Fig. 4a),
and there is likely an outstanding extinction debt to be
paid in future (Vellend et al. 2006; Hahs et al. 2009),
which may be exacerbated by isolation of remnant
habitat from immigrants (Drayton & Primack 1996)
and impediments to recruitment to secondary forest
(Goldsmith et al. 2011). To mitigate future extinctions, a
priority is to preserve existing forest remnants, including
secondary forests. Increasing connectivity between
existing patches will facilitate dispersal and increase
effective population sizes. Our plants database may assist
species-specific targeted conservation efforts by identi-
fying species that are probably extant but infrequently
sighted indicating rarity and vulnerability to extinction.

SEUX Model Assumptions and Recommendations

The SEUX model, like other extinction rate estimation
techniques (e.g., E/MSY [Pimm et al. 2014; Tedesco
et al. 2014)]), assumes that the average extinction rates
of discovered and undiscovered species are the same.
However, if undiscovered species actually have higher
extinction probabilities, then the method underestimates
the total extinction rate. We introduced the w parameter
in the SEUX model to quantify this effect and further

assess the plausibility of the Brook et al. (2003) estimate.
Estimated extinction rates are larger for lower w. The
Brook et al.’s (2003) estimate requires w = 0.17, indi-
cating that undiscovered species were approximately
5 times as likely to go extinct as discovered species.
Although w = 0.17 is probably unrealistically low, the
true odds ratio may differ somewhat from w = 1.

There are several factors that could lead to w < 1
(i.e., undiscovered species having higher extinction
probabilities than discovered species). However, our
understanding of these relationships is largely qualita-
tive. All else being equal, species with low abundance
are harder to detect and more extinction prone (e.g.,
McCarthy et al. 2014). The link between low abundance
and extinction risk is a general phenomenon (McKinney
1997) and has been observed specifically for habitat
fragmentation (table 2 in Henle et al. 2004) and plants
(Matthies et al. 2004; Sutton & Morgan 2009). Similarly,
small species (Sutton & Morgan 2009; Marini et al. 2012)
and species with restricted geographical ranges (e.g.,
Scheffers et al. 2012) are harder to detect and more
vulnerable to habitat loss. Undiscovered species may
also be more extinction prone because they cannot
benefit from species-targeted conservation. However,
collectors often have a bias toward novel specimens
and rare finds (Guralnick & Van Cleve 2005; Pyke &
Ehrlich 2010), which we expect to ameliorate w < 1 to
an unknown degree. Obtaining reasonable quantitative
estimates for w is an area for future work.

A particular vulnerability of SEUX is that rare species,
which tend to be simultaneously hard to detect and
extinction prone, may be preferentially lost soon after
habitat destruction begins, leading to underestimation
of early undiscovered extinctions. To overcome this,
collections need to include a large, early, and representa-
tive sample. We judge the size and timing of early plant
collections in Singapore to be largely adequate because
within 3 years of the arrival of British colonialists, 183
species from 73 families had already been collected.
Nevertheless, we found some evidence for low early
coverage of extinction-bound species. We observed that
early-discovered Singapore species had higher intrinsic
redetection probability and lower extinction probability
(Supporting Information), which suggests that early
collectors sampled easier-to-detect species that were less
extinction prone. This implies w decreases the farther
back in time one goes.

We expect low coverage of early extinction-bound
species to be the main challenge for future workers.
Early collectors generally focus on capturing a wide
spectrum of biodiversity, whereas recent collectors tend
to focus on species of conservation concern (Boakes
et al. 2010). Recently discovered species are generally
more likely to be threatened (Giam et al. 2012) and have
a narrower range (Treurnicht et al. 2017). However,
these general patterns are influenced by the taxonomic
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group and collectors’ biases (Guralnick & Van Cleve
2005; Boakes et al. 2010; Pyke & Ehrlich 2010). For
example, early Singapore collections included some
species-rich families with high extinction rates (notably
orchids [Supporting Information]). Future workers
interested in characterizing museum-collection biases
may find our new method for inferring redetection effort
useful. It addresses some of the shortcomings of previous
methods (Duffy et al. 2009) and produced estimates of
Singapore plants’ intrinsic redetection probabilities as a
byproduct (Supporting Information).

To estimate the absolute number of undiscovered
extinctions (as opposed to the percentage), SEUX
additionally requires information about how many extant
species remain undiscovered (Ur); however, Uy is—by
definition—unknown. If a prior can be obtained for Uy
(e.g., expert opinion), that can be easily incorporated
into our Bayesian approach to obtain credible intervals
for Xr. Our classical approach, however, requires a Ur
value (incorporating a Ur confidence distribution is
theoretically possible but it is unclear how it would be
obtained). In some circumstances, Uy = 0 is a reasonable
assumption (e.g., Singapore birds [Chisholm et al.
2016)); otherwise, another method (reviewed in Chao
& Chiu [2016]) can be used to estimate Ur. Either way,
the X7 estimate must be interpreted as predicated on
the Uy value (Fig. 4¢). For Singapore plants, we followed
Chisholm et al. (2016) and assumed Uy = 0. However,
given the lack of plateau in Fig. 2b, that new records
and rediscoveries continue to be made throughout
nature reserves (e.g., Chong et al. 2018; Ho et al. 2018;
Khoo et al. 2018), and that existing species have been
reassessed recently as new species (e.g., Niissalo et al.
2014), this is almost certainly false. Therefore, the
absolute number of undiscovered extinctions we found
should be interpreted as a lower bound, additional to
the effect of overestimating w discussed above.

The temporal pattern of extinctions produced by
SEUX can be informative, provided it is interpreted
with care. We assumed species went extinct the year
after last detection, which ensures a conservatively
higher estimate of total extinctions, but also means that
the extinction pattern is influenced by the pattern of
species discovery. Many of the extinctions appearing
in the uptick in the late 1800s (Fig. 4a) are more likely
to have occurred in the first two decades of the 1900s,
when plantations decimated the secondary forests that
had replaced the original primary forest after initial
deforestation (Corlett 1992).

Future workers may be interested in more sophis-
ticated methods for inferring discovered extinctions.
Structured elicitation methods can be used for expert
determinations (Keith et al. 2017). We used one of the
simpler statistical methods (reviews in Solow [2005],
Rivadeneira et al. [2009], and Boakes et al. [2015]);
however, if additional data are available (e.g., on species-
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specific threats and survey quality), then these can
be incorporated (Akcakaya et al. 2017). Nevertheless,
we found that even our simple method was useful to
supplement heuristics and narrow the list of species that
required closer scrutiny from experts.
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