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Biological invasions have movement at the core of their success. However, due

to difficulties in collecting data, medium- and long-distance dispersal of small

insects has long been poorly understood and likely to be underestimated.

The agricultural release of parasitic hymenoptera, a group of wasps that are

critical for biological pest control, represents a rare opportunity to study the

spread of insects on multiple spatial scales. As these insects are typically less

than 1 mm in size and are challenging to track individually, a first-time bio-

control release will provide a known spatial position and time of initial

release for all individuals that are subsequently collected. In this paper, we

develop and validate a new mathematical model for parasitoid wasp dispersal

from point release, as in the case of biocontrol. The model is derived from

underlying stochastic processes but is fully deterministic and admits an

analytical solution. Using a Bayesian framework, we then fit the model to an

Australian dataset describing the multi-scale wind-borne dispersal pattern

of Eretmocerus hayati Zolnerowich & Rose (Hymenoptera: Aphelinidae). Our

results confirm that both local movements and long-distance wind dispersal

are significant to the movement of parasitoids. The model results also suggest

that low velocity winds are the primary indicator of dispersal direction on the

field scale shortly after release, and that average wind data may be insuffi-

cient to resolve long-distance movement given inherent nonlinearities and

heterogeneities in atmospheric flows. The results highlight the importance

of collecting wind data when developing models to predict the spread of

parasitoids and other tiny organisms.
1. Background
Movement is a fundamental characteristic of living organisms, and understanding

movement is crucial for understanding the invasion [1] and persistence [2] of

populations in ecosystems. A particular challenge is characterizing and predicting

movement and its consequences when the organism both (i) is difficult to detect,

and (ii) has the potential for stratified movement over different spatial scales using

different modes of movement. Many organisms share both of these characteristics,

such as species with dispersal polymorphism [3] or organisms that undergo long-

distance anthropogenic dispersal [4,5]. In this paper, we used the first-release of a

small parasitoid wasp, Eretmocerus hayati Zolnerowich & Rose (Hymenoptera:

Aphelinidae), as a case study to quantify stratified dispersal on multiple scales.

Such small entomophagous insects (less than 1 mm) are significant for biocontrol

of crop pests in agro-ecosystems [6], and E. hayati undergoes a form of stratified
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dispersal [7] that is common in small insects: a combination

of wind-borne dispersal over long distances with short-range

dispersal governed by different mechanisms [8].

The challenge presented by stratified movement is both

theoretical and empirical. The theoretical challenge is that

models are required that can integrate different modes and

scales of movement, such as individuals’ response to local

cues that trigger long-distance dispersal as well as aero-

dynamics at both the local and geophysical scales. The

empirical difficulty lies in the challenge of obtaining multi-

scale data to verify such models. The size of a study area is

often constrained by research feasibility, and consequently

there exists a bias towards measurement of routine small-scale

movements compared to long-distance emigration and immi-

gration movements [9]. Furthermore, wind data, if collected, is

often temporally averaged and only collected at one location.

The resolution of data collection is chosen to match a particular

mode of movement. As a consequence, integrating multiple

spatial scales is typically done by only including movement

behaviours relevant to the focal scale and neglecting move-

ment occurring on larger spatial scales. As a consequence of

the latter, rates of spread tend to be underestimated due to

study design [9], and the neglect of infrequent long-distance

dispersal events has been identified as a cause of spread-rate

underestimation in the literature [1].

Accurate descriptions and predictive models of long-

distance dispersal events are important given their significance

to population dynamics. For example, the agro-ecosystems

that insect pests and biocontrol agents inhabit are typically

fragmented, such that the functional connectivity of the

landscape—which incorporates both distance between suitable

habitat and dispersal ability—is a key determinant of spread

[10]. Long-distance dispersal capacity may reduce colonization

lag leading to greater biocontrol efficacy [11], while local-scale

search ability is necessary for effective pest suppression [6].

Local-scale and individual-level processes are also impor-

tant to dispersal dynamics because these factors are often

the trigger for shifts between different modes of dispersal.

For example, the physiological internal state of the indivi-

dual [12] and the organism’s reaction to environmental cues

(e.g. [13,14]) may initiate long-distance dispersal. Even

during the so-called ‘passive’ dispersal (long-distance disper-

sal primarily by wind or water advection), the individual

controls entry into, exit from, and movement within the

advective stream (examples include spider ballooning [15,16]

and the vertical migration of plankton [17]). These particulars

of dispersal control can lead to biologically significant differ-

ences in dispersal distance [18]. Therefore, a fundamental

challenge in the study of long-distance dispersal is how to

effectively integrate processes on multiple spatial scales and

meaningfully confront hypotheses (i.e. models) with data.

Even rudimentary attempts to model dispersal on multiple

spatial scales can reveal new insights into the fundamen-

tal biological and physical processes. Particularly in the case

of simple models, mismatches between the theoretical

distributions and data are especially useful for falsifying

hypotheses about movement processes and identifying gaps

in our understanding [1]. The subsequent challenge is then to

obtain the data necessary to refine and validate more sophisti-

cated models, and to develop the modelling techniques

necessary to overcome data limitations.

For example, fast-moving individuals dispersing across

large spatial scales are unlikely to be detected, but it may be
feasible to infer the presence of an organism from their

impact—e.g. infections, parasitizations or evidence of preda-

tion. With an additional modelling layer inferring presence

from impact, a link can be made between the question of

interest and the type of data that is feasible to obtain. Such com-

plex models can be fitted using Bayesian frameworks, which

have been used to answer a variety of ecological hypotheses

in recent years [19]. For example, Ovaskainen et al. [20] used

Bayesian methods to discern the relationship between emigra-

tion rate and age, and Bayesian methods have also been used to

estimate extinction risks [21], parameters for demographic

models [22], epidemiological parameters [23] and gene

frequencies [24]. In contrast to mechanistic mathematical simu-

lation models, which are typically validated with data using ad

hoc approaches combined with parameter sensitivity analysis,

the key benefit of the Bayesian approach is that it can connect

model outputs to proxy data in a systematic way. The kinds

of complex and multi-scale spatial models that are needed for

characterizing stratified dispersal require long computation

run-time, which may mean that full characterization of the

Bayesian posterior distribution is not possible. However even

in such cases, Bayesian methods are valuable because they

calibrate model parameters in a way that is both rigorous

and transparent.

Our study builds upon previous work that used a simple

model to identify wind advection as a necessary process to

explain the dispersal of an introduced E. eretmocerus popu-

lation [25]. Three shortcomings of this earlier study were that

(i) the diffusion processes occurring during wind-borne flight

were not modelled explicitly, but rather an approximation

was made by assuming that spread occurred over the entire

spatial grid cell; (ii) model fitting was performed based upon

a match between the presence/absence in the model and the

data, rather than between inferred and predicted densities;

and (iii) active flight behaviour was not considered in a prob-

abilistic sense, but operated as a global switch mechanism

based on changing environmental conditions.

In this study, diffusion is modelled explicitly during

both local and wind-borne dispersal modes, and active flight

behaviour is modelled nonlinearly based on a probabilistic

interpretation of flight decisions given environmental vari-

ables. Simplicity and mathematical transparency were valued

over mechanistic detail in order to assess the performance of

our hypotheses. Additionally, we use a Bayesian framework

to infer observed parasitizations from modelled population

densities and thus estimate the parameter values of the parasi-

toid dispersal mode by comparing to data. Parameters from a

related whitefly parasitoids [26] were used to construct the

priors for the Bayesian framework.
2. Material and methods
Data were taken from a first-time biocontrol release of a small para-

sitoid wasp, E. hayati, near the town of Kalbar in eastern Australia,

described in detail in earlier studies [7,25]. In the earlier study [25],

a model for the parasitoid dispersal was fitted using the Kalbar

data, and then tested on a later and separate first-time release

near the town of Carnarvon in Western Australia. This model,

upon which our study builds, assumed that dispersal was via

simple wind-advection and was fitted by matching emergence of

parasitoids in the field from the F1 generation to the predicted

presence of females from the F0 or release generation. More specifi-

cally, the earlier model fitted three parameters: (i) a maximum

http://rsif.royalsocietypublishing.org/
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wind-speed at which females would undertake a wind-borne

flight, (ii) a diurnal time-window during which the wind-borne

flights could occur, and (iii) a dispersal distance factor f that

scaled flight time and wind speed to displacement distance.

Importantly, in this earlier model, no diffusion processes were

explicitly modelled at the landscape scale; rather, a grid cell size

of 500 � 500 m was used, which in effect spread females evenly

over the area of each cell after every wind-borne flight. By contrast,

in this study, we model diffusion explicitly.

We outline the additional specific assumptions of the previous

model below for easy comparison with our new model. It was

assumed that females would undertake at most one wind-

borne flight per day, with equal probability of occurring during

any 30 min time interval within the time-window provided that

the average wind-speed during that interval was lower than the

maximum permitted. Another simplifying assumption was that

females would travel at the same speed and in the same direction

as the averaged wind, and that the flight time was the same for all

individuals. Flight distance was found by multiplying wind speed

and flight time by the factor f. Oviposition occurred for the

females’ whole lifetime, such that the presence of a female at a

location translated directly to detection of emerging F1. It was

assumed that variance in development time was low such that

the predicted presence of females in the model could be fitted to

the emergence data with a single time-shift.

As a starting point for the new model analysed in this paper,

we will maintain the following assumptions from [25] about

E. hayati flight. We refer the reader to the earlier paper for

detailed discussion of these assumptions [25].
— Each wasp will undertake at most one wind-borne flight per

day. This is a simplifying assumption; however, we extend

the previous work by allowing the probability to undertake

the daily flight to be fitted by the model.

— The mean direction of this flight will be in the same direction

as the average wind velocity during the flight, and to a dis-

tance proportional to the wind’s speed. The proportionality

factor describing wind speed to drift is fitted by the model.

— Wind velocity is assumed spatially constant in the study area,

though it varies temporally according to collected data. It

should be noted that during the original release experiment,

wind measurements were recorded at 1.8 m off the ground

at the release point only, and wind vectors were averaged

over 30 min intervals. Therefore, wind variability across the

landscape, vertically (e.g. boundary layer effects, eddies)

and on shorter timescales (e.g. gusting, calms) are neglected.

— Wind-borne flights have a fixed duration, initially set at 30 min.

This duration is comparable to flight durations measured in

flight-chamber experiments for another Eretmocerus species [27].

— Wasps are less likely to initiate wind-borne flight in higher

wind velocities. In many insect species, individuals will delay

flight when wind speeds make flight difficult or dangerous

(e.g. [28]). In the previous study [25], a parameter specifying

the maximum wind speed at which flights occurred was

found to be a key parameter determining fit between the

model and data.
Daily movement for each wasp can be thought of as consisting

of two cases: (i) the wasp takes one wind-borne flight at some point

during the day, which we model as drift diffusion or (ii) the wasp

only moves around locally, which we model as diffusion with

possibly a slight drift in the day’s (weighted) average wind direc-

tion (see Results). For the purposes of this model, both modes of

dispersal will be considered passive and independent of the move-

ment of other wasps; we leave it to future studies to determine

the relative effect of factors such as host distribution, landscape

heterogeneity and wasp aggregation due to mating.
Departing from [25], we will explicitly model both diffusive

processes by assuming that the probability distribution for each

wasp’s dispersal on a given day is determined via a special

case of the Fokker–Planck equation

@pðx,tÞ
@t

¼ �
X2

i¼1

@

@xi
½miðtÞpðx, tÞ�

þ 1

2

X2

i¼1

X2

j¼1

@2

@xi@xj
½Dijpðx, tÞ� ð2:1Þ

with wind drift vector m(t) ¼ (m1(t), m2(t))T and diffusion tensor

Dij ¼
X2

k¼1

siks jk:

In this equation, the first spatial derivative models drift in the

direction of m(t) while the second derivative models Brownian

motion with two dimensional diffusivity D. Since the initial con-

dition for equation (2.1) is given to be a point mass at the origin

(each day’s dispersal is considered separately), solutions are

given analytically as a bivariate normal distribution function

with wind-based mean m(t) and covariance matrix D which

we will assume is non-singular so that it can be specified in

terms of correlation r and standard deviations in the x- and

y-directions, sx and sy, respectively.

For wasps that only move around locally,m is taken to be a small

constant (based on average wind direction) or zero so that the

dynamics are primarily diffusion. Additionally, the diffusion

tensor is assumed to be smaller than that for wind-based flight.

For wasps taking a wind-based flight, the timing of the flight is con-

sidered to be active behaviour by the wasp based on the time of day

and past and current wind conditions. The effective m for a given

wasp could be calculated as the integral of the wasp’s wind drift

while it was in flight, and this is aggregated over all possible

flight take-off times based on take-off time probabilities achieve

the time-dependent drift vector m(t) seen in equation (2.1). Total

wasp dispersal for the day is then a realization of a mixture distri-

bution obtained from the two cases of wind-borne and local

movement, based on the probability of taking a wind-borne flight

during the day given environmental conditions. Finally, we take

each day’s dispersal to be independent of all previous days so that

we can run this process on a discrete daily time step for as long as

desired, aggregating to obtain the total wasp dispersal at the end.

2.1. Active behaviour: initiating wind-borne flight
During any given day d, we assume that the probability of a wasp

initiating a wind-borne flight at time t (measured in hours) is

described by a density function h(t, wd(t); uh) where wd(t) is a

function giving the day’s wind velocity at time t and uh is a set of

shape parameters required to define the components described

below (see the electronic supplementary material, appendix A for

a complete, explicit mathematical description of this function). Inte-

grating h(t, wd(t); uh) from t¼ 0 to 24 h yields a value between zero

and one which represents the probability that a wasp takes a wind-

borne flight during the day. This function completely describes the

active-flight component of our model, and in our formulation,

h can be understood as having three main components: (i) a prob-

ability density function f(t) based on daylight availability which

specifies the hours in which wasps are most likely to fly, (ii) a scaling

function g(kwd(t)k) based upon wind velocity, and (iii) a redistribu-

tion function that raises the probability of taking a wind-borne flight

later in the day if conditions were previously unfavourable.

Our implementation of f (t), the daylight probability density

function, is the difference of two logistic functions scaled by the

integral of f (t) from t ¼ 0 to 24 hours (see figure 1, yellow

dashed line). It requires four parameters, a1, a2, b1 and b2, the

first two of which locate the centre of the first and second logistic,

respectively, and the second two modify the steepness of the

http://rsif.royalsocietypublishing.org/
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incline and decline of the functions. Similarly, g(kwd(t)k) is

implemented as a single, decreasing logistic function which

takes on values between zero and one depending on how probable

it is that a wasp would fly at that wind speed. Its two parameters, ag

and bg, locate and scale the function, respectively (see the electronic

supplementary material, appendix A for explicit equations for f, g
and all other functions).

A naive approach to implementing active flight take-off behav-

iour would be to simply multiply these two functions together,

obtaining a density for the time that wind-borne flight is initiated.

This approach, however, assumes that each moment’s probability

is independent of wind conditions earlier in the day. The behav-

iour it models could be imagined as a process where, before the

day starts, each wasp randomly chooses a moment t0 to initiate

wind-borne flight and then actually takes the flight with prob-

ability g(kwd(t0)k). If conditions are poor, the wasp only moves

in a more local manner.

To allow previous conditions to increase the likelihood of flight

later in the day, we combine f and g in a way that considers the aver-

age decrease of probability in all previous moments weighted by the

cumulative distribution function of f (lost flight opportunity later in

the day has less effect than if the poor conditions occurred early).

The result we call h(t, wd(t); uh). An example of this redistribution

can be seen in figure 1, and for specifics of the function, we direct

the reader to the electronic supplementary material, appendix A.

2.2. Probability aggregation
Having determined the probability that a wasp initiates wind-

borne flight at any point during the day, the total spatial

probability distribution for each wasp’s movement at the end

of a given day is a weighted average of local diffusive movement

and drift-diffusion based on wind conditions during flight. The

expected spatial population density of wasps is given by multi-

plying the number of wasps by this probability distribution.

Assuming that movement on each day is determined indepen-

dent of all previous days, we convolute the distribution of each

successive day to the current wasp distribution in order to deter-

mine each new, aggregate spatial density. This process yields the

final model simulations seen in figure 3.

2.3. Bayesian modelling framework
In order to compare model results to field data and thus assess, the

model’s relative performance under differing parameter choices, it
is necessary to introduce a framework that can estimate the likeli-

hood of observing the collected data under a given model scenario.

The details of this framework are made more complex by the fact

that on the landscape scale, wasps were not directly observed in

the field but rather leaves were collected and observed for emer-

ging offspring over a number of days. Each collection location

(sentinel field) varied in size, and collection was not standardized

in any rigorous way—collectors were instructed to search out

leaves holding the host species, ideally displaying signs of

having been parasitized. The time duration of this collection was

unspecified. In the release field, leaves were collected in the same

collection grid as had been previously used for direct observation

of wasps [7]. The location of each sentinel field and the release field

can be seen in figure 2.

To produce the likelihood of the model given emergence

data from the sentinel fields, we assumed that the effec-

tive area canvassed by the collector in each field was roughly

equivalent between fields and that parasitized hosts do not

leave or enter the field prior to collection. Each sentinel field

was then assigned an observation probability describing the

likelihood that each given parasitized host present in the field

during collection would be collected and a wasp later observed

to emerge. To account for the differing size of the sentinel

fields, these probabilities were given a Beta prior with the

mean chosen to be the fraction of the field effectively canvassed

by the collector, thus conveying a priori information that a

parasitized host in a larger field is less likely to be collected.

A more detailed description of the priors is given in the

electronic supplementary material, appendix B. Fecundity

was assumed constant in time for the duration of the study,

based on [29].

To model the number of parasitized hosts present in each

field at collection time, we assumed that time from oviposition

to emergence was 19–25 days, distributed approximately accord-

ing to a truncated normal distribution with variance of 2 days.

Although the literature on laboratory observed times often

suggests a shorter period [30,31], the field data observed by

Kristensen et al. necessitated the use of this longer time distri-

bution [7,25] based on the number of emergences observed at

longer times from collection. The mean number of collected para-

sitized hosts could then be calculated based on the population

density history and the probability of collection in each field.

Actual per-day emergence observations were then assumed to

be a Poisson distribution parametrized by this mean, resulting

in a likelihood of the emergence data given the model.

http://rsif.royalsocietypublishing.org/
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Calculations for the release field were done in a similar manner,

but restricted to the collection grid.

Owing to the 25 � 25 m cell resolution of the model, adult

count data collected in each cardinal direction out to a maximum

distance of 22 m was not included in this study. Direct obser-

vation of adults in the release field grid was included (figure 4)

and used to fit model parameters alongside emergence data.

The likelihood of the data given the model was once again

assumed to be Poisson. To calculate the mean of the distribution,

we assumed the probability of observing a given parasitoid
present in a grid cell was equivalent for each cell scaled by the

number of leaves turned over, which was either 90 or 270

depending on the cell. Parasitoid movement during the data

collection period was not considered.

2.4. Implementation details
In order to implement the wasp dispersal model in a simulation,

certain decisions must be made concerning the time and space

discretization. In discretizing time, we approximated all described

http://rsif.royalsocietypublishing.org/
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processes using a left Riemann sum: more precisely, we con-

verted all probability densities that were a function of time

(e.g. h(t, wd(t); uh) and its subfunctions) into probability mass

functions by assuming that wind velocity is constant on each

time interval, which we chose to be 1 min in length. Since wind

data were only provided in 30 min intervals, we used a linear

interpolation to specify velocity on a per-minute basis.

The grid resolution for spatial discretization was chosen as a

balance between computational cost when calculating maximum

a posteriori parameter estimates and the need to maintain a fine

enough resolution to place each point in the release field collection

grid into different discretization cells. Since all wasp movement

represents a solution to equation (2.1) starting from a point mass,

and thus is a normal distribution, spatial discretization requires

evaluating the bivariate normal cumulative distribution function

to acquire total density in each cell. Though we implement this cal-

culation using a Fortran library [32] through SciPy, this process

typically represents the primary computational bottleneck since

it must be done at each point in the time discretization for as

many cells as constitutes the non-negligible area of the probability

distribution, defined in our code as the smallest square block of

cells centred at the mean which integrates to at least 0.999.

Our implementation of the model is written in Python 3.5 and

has been specifically designed for general reuse and transparency,

including basic documentation and pervasive comments within

the code. Daily dispersal is computed in parallel using the

Python multiprocessing library, and the convolution of each result-

ing distribution if via FFT may be performed on a GPU if CUDA

and the necessary Python libraries are installed. Field data is

organized using the Pandas library, which has some similarities

to R. The Bayesian modelling framework is built and implemented

using the PyMC library. While the time required to run the model

for a given parameter set is dependent on domain size, resolution

and dispersal variance, typical run times for a domain of 64 km2

are around 1 min for 19 simulated days. The source code for this

implementation available and maintained at https://github.

com/mountaindust/Parasitoids [33].
3. Results
Results for the maximum a posteriori estimate of the model par-

ameters (electronic supplementary material, table A2) reveal

local and wind-based diffusion coefficients that are largely in

line with findings in the literature [7]. Local movement was

found to be uncorrelated, with a standard deviation of several
metres in either direction. The data further suggested that there

was no local drift based on average wind direction. For wind-

based diffusion, results suggested standard deviations around

0.15 km with an east–west bias. This bias is likely to be

caused by the species’ phototactic response to the rising and set-

ting of the sun [34–36]. In contrast to local movement, this

diffusion was found to be positively correlated. The resulting

slope of the best linear unbiased prediction of y given x for

this distribution is 0.84 which, in its north-eastern direction, cor-

responds to 408 north from east. This is roughly the direction of

the sentinel fields E and G (figure 2), so it is likely that this is an

effort on the part of the maximum a posteriori algorithm to either

spread wasps further in these fields’ direction or to make up for

a fixed flight duration, as this is approximately the average

wind heading for winds that wasps actually fly in (the average

heading for wind speeds under 1 m s21 is 57.48 north from east;

see the electronic supplementary material, figure A1).

Wind-based flight time was held constant at 30 min when

estimating parameters, with wasps able to fly a distance pro-

portional to the per-minute wind speed. The constant of

proportionality relating wind speed to parasitoid drift, mr, was

fit to data as 1.18. This value is similar to what was found by

Kristensen et al. [7] to provide the best fit for data collected

from the Kalbar site and reinforces a roughly 30 min flying

period. However, maximum a posteriori parameter estimates fit

the model so that wasps fly during a more extended portion of

the day than might be expected, roughly 7.18 to midnight. At

the Kalbar site, at the time of year the field study was conducted,

sunrise and sunset occurred at 6.00 and 20.00, respectively. We

consider it likely that these extended flight times reflect lack-

of-fit to emergence data further away from the release site as

described below. Flight probability as a function of wind

speed was fit to be 0.5 at 1.26 m s21. With the fitted scaling

parameter bw ¼ 3.91, the probability of wind-advected flight

with wind speed of 0 m s21 at takeoff is roughly 0.99, and at

2 m s21, it is about 0.05.

Figure 3a–d shows the model prediction for wasp density

(number/625 m2) 3, 6, 9 and 19 days post release, respectively.

Predictions of 3, 6 and 9 days were chosen to reflect the times at

which data for direct observation counts of adult parasitoids

were recorded for the release field (see figure 4). 19 days post

release, leaves were collected in each of seven fields (red out-

lines in figure 3a–d, labelled A–G in figure 3e– f ) and

https://github.com/mountaindust/Parasitoids
https://github.com/mountaindust/Parasitoids
https://github.com/mountaindust/Parasitoids
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subsequently observed for emergences (figure 3e) in order to

assess long-distance dispersal. Figure 3e– f shows emergence

observations (number of emergences) (e) and the model’s pro-

jected emergences (number/100 m2) in the field (f ) from hosts

in a parasitized state 19 days post release using the parameters

electronic supplementary material, table A2.

As can be seen in figure 3f, our model broadly captures

emergence trends in fields close to the release field A, but lar-

gely underestimates the number of parasitoids in fields

further away. Also of particular note is the dual spatial-

scale nature of the wasp distribution in figure 3a–c. Over

the entire landscape, the distribution may be characterized

as heavy-tailed with the tail skewed roughly in the average

direction of the wind (northwest). However, on a more

local spatial scale where the wasp density is higher (yellow

and green), the distribution is skewed instead to the northeast

in a direction more closely following the average low-velocity

wind heading. This dual-spatial scale dynamic continues up

until 13 days post release, when local dynamics begin to

merge with the average full velocity profile of the wind.

At 16 days post release, the wasp density is similar in charac-

ter to that seen in figure 3d, where it should be noted that the

centre of the distribution actually lies to the north of the

release field rather than the northwest, even though the distri-

bution is skewed to the northwest with the average wind.

Unfortunately, there were no sentinel fields in the northwest

direction for direct comparison with data.

Figure 4 shows the model’s projected density of parasi-

toids (individuals/100 m2) over the release field as a surface

plot along with the observed parasitoid densities normalized

by collection methodology (shown as bars). The largest peak

in this local projected parasitoid density falls northwest and

northeast of the release site, which correspond to the average

wind direction and average low-velocity wind direction,

respectively. This is in general agreement with observed

data and the northeast direction is further represented in

the model outside the release field by a pocket of relatively

high population density that predominately aligns to the

northeast through 9 days post release (figure 3a–c).

These observations are also evident when examining the

maximum a posteriori estimates for parameters in the Bayesian

modelling framework (electronic supplementary material,

table A3). Specifically, the data suggest a probability of 0.037 to

observe any single given emerging parasitoid in field G that

was incubating on the collection day. A priori, this number

seems rather high given that the parasitized host is around a

millimetre in size, possibly out of view on foliage, and could be

anywhere in the sentinel field. Probabilities fitted for fields

closer to the release point were anywhere from 0.00031 to

0.0034, with the exception of field D which was 0.033 and field

E which was 0.0123. We note that the probability for observing

a given emerging wasp in the release field was 0.064, but in

this case, the area was heavily restricted to a sampling grid,

and the probability only applies to incubating wasps located

within this grid.

In addition to maximum a posteriori results, we fed the model

into an adaptive Metropolis–Hastings Monte Carlo Markov

Chain (MCMC) algorithm in order to analyse the shape of the

posterior distribution for each of the model’s parameters. This

algorithm features block-updating using a multivariate normal

jump distribution whose covariance is tuned during sampling

[37,38]. Given that our model is spatially explicit, with a discrete

daily time-step, and a Bayesian modelling layer connecting
proxy data to predicted wasp density, analytical derivatives

are not available and therefore Langevin and Hamiltonian

MCMC methods (such as those seen in [23]) cannot be used.

Additionally, posterior distributions could not be obtained. It

is important to note that, even after coding for efficiency, realiz-

ations of a fully spatial, multi-scale model take far longer to

obtain than is common in statistical Bayesian posterior analysis.

One million model realizations represents a typical number for

fully formed and converged posteriors. In our case, 10 000

model realizations requires approximately one week to produce.

Therefore, after 220 000 model samples representing three

months of computation time, the algorithm has yet to converge

to a posterior distribution.
4. Discussion
On a spatial scale of less than 1 km, the model reproduces

results seen in the field, suggesting that passive drift-diffusion

with active behaviour at take-off may often be sufficient to cap-

ture the spread of small insects from point release locally.

Despite the coarse nature of our field data, the Bayesian frame-

work was clearly able to separate out two modes of diffusion,

local and wind-based, when given similar priors (see the elec-

tronic supplementary material, table A1). The east–west

phototactic bias noted in the literature was also reproduced

on the landscape scale. A strong fitted correlation coefficient

for wind-based flight suggests that the model could be

improved by allowing flight duration to vary, which would

roughly stretch the resulting distribution along the direction

of the wind. Finally, our model indicates that within the release

field and the fields immediately surrounding it, the predomi-

nant local dispersal direction may be forecast for up to two

weeks by averaging over wind velocities with magnitude less

than 1 m s21.

On spatial scales over 1 km, our results strongly suggest

that drift-diffusion based solely on spatially homogeneous

and temporally averaged wind velocities are insufficient to

capture the long-distance dispersal of parasitoid wasps in

the field. This fact is evident both in the inflated observation

probabilities returned by the Bayesian framework for the far

sentinel field (G) and a midrange sentinel field (D), and by

the increasingly poor fit of the model to emergence data as

the collection field gets further away from the release point

(figure 3). A positively correlated wind-based diffusion pat-

tern and extended flight hours also point to this conclusion.

The layout of the fields was roughly perpendicular to the

average wind direction, yet parasitoids reached high densities

in further fields. As noted in the previous work [7,25], wind

speed during the study was related to wind direction such

that high wind speeds tended to point perpendicular to the

further fields and lower wind speed tended to flow parallel.

Therefore, a model that constrains parasitoids to only fly

when wind speeds are relatively low allows parasitoids to

remain in the cultivated area and disperse to far fields. How-

ever even with this behavioural mechanism included, the

parasitoid densities predicted by the model are low com-

pared with the data. We suggest two possible non-mutually

exclusive explanations for the higher-than-predicted con-

centrations of parasitoids in far fields: (i) variability of

wind-flow, both spatially (across the landscape and as a func-

tion of height) and temporally or (ii) parasitoids’ ability to

direct landing towards cultivated land.

http://rsif.royalsocietypublishing.org/
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First, on spatial scales on the order of a kilometre or more, it

is likely important to resolve the spatial and smaller scale tem-

poral variability of the wind. In order to obtain an analytical

solution, our model assumed uniform wind speed and direc-

tion in space at any given point in time. Wind speed does

vary as a function of height, and parasitoids that are advected

upward on, for example, thermal updrafts may be carried sig-

nificantly farther than those flying near the ground [39].

Previous work suggests that other tiny insects may suspend

active flight once airborne, potentially extending flight times

and distances travelled [40]. Furthermore, heterogeneous land-

scapes and vegetation will create spatially varying winds [41].

Complex structures such as rolling eddies, convection cells

and other instabilities generated by density stratifications may

also be present and greatly alter flight trajectories [42]. Note

that characterization of these complex structures requires

additional spatial and temporal resolution of wind, and

we were not able to capture these effects in this study given

the limited wind data. Gusts may also play a role in longer

than predicted dispersal distances. Given that the parasitoids

strongly prefer to fly on calm days, we do not think that gusts

alone can explain the differences we see between actual and pre-

dicted long-distance dispersal. Overall, our results suggest that

it is important to resolve the spatially and temporally varying

air flow above the landscape in order to correctly predict the

dispersal of passively moving, wind-borne organisms.

Second, while very small insects in the wind-stream are gen-

erally regarded as ‘passive’ dispersers, and cannot control their

direction of flight, they can potentially control entry to and exit

from the wind-stream. There is some evidence that visual flight-

arrest triggers may be used by small insects to land in habitat

that is more likely to provide them with needed food and repro-

duction resources, thus reducing the risk that wind-borne

dispersal holds of transporting individuals to resource-poor

areas. In this study, the agricultural area formed a thin strip

(approx. 3 km wide) along a creek, and the wider landscape

was predominantly livestock pasture. If the parasitoids were

triggered to land by the greener irrigated crop fields compared

to the browner surrounding landscape, and particularly if the

parasitoids are capable of detecting the oncoming colour differ-

ence that signalled the edge of the agricultural area, then this

may have reduced the proportion of parasitoids leaving the

agricultural area. Most phytophagous insects are responsive

to plant-related light wavelengths as triggers to land [43,44].

They show an attraction to plant-related colours and are influ-

enced by colour contrasts that occur at field edges or between

crop types [45,46]. In related Eretmocerus eremicus, females in

particular have been demonstrated to respond to a plant cue

in a wind tunnel experiment [36], and UV-absorbing plastic

sheeting impairs the ability of Eretmocerus mundus to locate
plants containing hosts [47]. This raises the possibility that para-

sitoids in the wind-stream may respond to visual stimuli in

order to reduce the risk of being carried past potentially

resource-rich areas [48], which would explain the higher con-

centrations of parasitoids indicated by the data compared to

that predicted by the model.
5. Conclusion
Matches and mismatches between data and model predictions

allow us to refine our hypotheses about the mechanisms of

movement. In this study, a Bayesian framework was used to rig-

orously connect a mechanistic, mathematical simulation model

to sparse proxy data in order to verify a stratified dispersal mech-

anism. It was capable of identifying two separate diffusion

kernels associated with local and wind-borne dispersal modes,

respectively, and the exogenous condition (wind speed) that

likely triggers the switch between dispersal modes. The model

also indicated that, while conditional wind-borne dispersal pro-

vides some of the explanation for how the parasitoid successfully

dispersed to other host-containing fields on the landscape scale,

it could not explain how the parasitoid did so in such high num-

bers. Therefore two possible explanations—variability of the

windflow across the landscape scale, or the use of visual host-

habitat cues as triggers for landing—are proposed. The Bayesian

framework provided here can be used to test either of these

hypotheses once the appropriate data is collected.
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